Matching Items (62)

135777-Thumbnail Image.png

Voltage Sense Amplifier (VSA) Design For RRAM Cross-Point Memory Array Structures

Description

RRAM is an emerging technology that looks to replace FLASH NOR and possibly NAND memory. It is attractive because it uses an adjustable resistance and does not rely on charge;

RRAM is an emerging technology that looks to replace FLASH NOR and possibly NAND memory. It is attractive because it uses an adjustable resistance and does not rely on charge; in the sub-10nm feature size circuitry this is critical. However, RRAM cross-point arrays suffer tremendously from leakage currents that prevent proper readings in larger array sizes. In this research an exponential IV selector was added to each cell to minimize this current. Using this technique the largest array-size supportable was determined to be 512x512 cells using the conventional voltage sense amplifier by HSPICE simulations. However, with the increase in array size, the sensing latency also remarkably increases due to more sneak path currents, approaching 873 ns for the 512x512 array.

Contributors

Agent

Created

Date Created
  • 2016-05

158814-Thumbnail Image.png

Fully-passive Wireless Acquisition of Biosignals

Description

The recording of biosignals enables physicians to correctly diagnose diseases and prescribe treatment. Existing wireless systems failed to effectively replace the conventional wired methods due to their large sizes, high

The recording of biosignals enables physicians to correctly diagnose diseases and prescribe treatment. Existing wireless systems failed to effectively replace the conventional wired methods due to their large sizes, high power consumption, and the need to replace batteries. This thesis aims to alleviate these issues by presenting a series of wireless fully-passive sensors for the acquisition of biosignals: including neuropotential, biopotential, intracranial pressure (ICP), in addition to a stimulator for the pacing of engineered cardiac cells. In contrast to existing wireless biosignal recording systems, the proposed wireless sensors do not contain batteries or high-power electronics such as amplifiers or digital circuitries. Instead, the RFID tag-like sensors utilize a unique radiofrequency (RF) backscattering mechanism to enable wireless and battery-free telemetry of biosignals with extremely low power consumption. This characteristic minimizes the risk of heat-induced tissue damage and avoids the need to use any transcranial/transcutaneous wires, and thus significantly enhances long-term safety and reliability. For neuropotential recording, a small (9mm x 8mm), biocompatible, and flexible wireless recorder is developed and verified by in vivo acquisition of two types of neural signals, the somatosensory evoked potential (SSEP) and interictal epileptic discharges (IEDs). For wireless multichannel neural recording, a novel time-multiplexed multichannel recording method based on an inductor-capacitor delay circuit is presented and tested, realizing simultaneous wireless recording from 11 channels in a completely passive manner. For biopotential recording, a wearable and flexible wireless sensor is developed, achieving real-time wireless acquisition of ECG, EMG, and EOG signals. For ICP monitoring, a very small (5mm x 4mm) wireless ICP sensor is designed and verified both in vitro through a benchtop setup and in vivo through real-time ICP recording in rats. Finally, for cardiac cell stimulation, a flexible wireless passive stimulator, capable of delivering stimulation current as high as 60 mA, is developed, demonstrating successful control over the contraction of engineered cardiac cells. The studies conducted in this thesis provide information and guidance for future translation of wireless fully-passive telemetry methods into actual clinical application, especially in the field of implantable and wearable electronics.

Contributors

Agent

Created

Date Created
  • 2020

158769-Thumbnail Image.png

Efficient and Online Deep Learning through Model Plasticity and Stability

Description

The rapid advancement of Deep Neural Networks (DNNs), computing, and sensing technology has enabled many new applications, such as the self-driving vehicle, the surveillance drone, and the robotic system. Compared

The rapid advancement of Deep Neural Networks (DNNs), computing, and sensing technology has enabled many new applications, such as the self-driving vehicle, the surveillance drone, and the robotic system. Compared to conventional edge devices (e.g. cell phone or smart home devices), these emerging devices are required to deal with much more complicated and dynamic situations in real-time with bounded computation resources. However, there are several challenges, including but not limited to efficiency, real-time adaptation, model stability, and automation of architecture design.

To tackle the challenges mentioned above, model plasticity and stability are leveraged to achieve efficient and online deep learning, especially in the scenario of learning streaming data at the edge:

First, a dynamic training scheme named Continuous Growth and Pruning (CGaP) is proposed to compress the DNNs through growing important parameters and pruning unimportant ones, achieving up to 98.1% reduction in the number of parameters.

Second, this dissertation presents Progressive Segmented Training (PST), which targets catastrophic forgetting problems in continual learning through importance sampling, model segmentation, and memory-assisted balancing. PST achieves state-of-the-art accuracy with 1.5X FLOPs reduction in the complete inference path.

Third, to facilitate online learning in real applications, acquisitive learning (AL) is further proposed to emphasize both knowledge inheritance and acquisition: the majority of the knowledge is first pre-trained in the inherited model and then adapted to acquire new knowledge. The inherited model's stability is monitored by noise injection and the landscape of the loss function, while the acquisition is realized by importance sampling and model segmentation. Compared to a conventional scheme, AL reduces accuracy drop by >10X on CIFAR-100 dataset, with 5X reduction in latency per training image and 150X reduction in training FLOPs.

Finally, this dissertation presents evolutionary neural architecture search in light of model stability (ENAS-S). ENAS-S uses a novel fitness score, which addresses not only the accuracy but also the model stability, to search for an optimal inherited model for the application of continual learning. ENAS-S outperforms hand-designed DNNs when learning from a data stream at the edge.

In summary, in this dissertation, several algorithms exploiting model plasticity and model stability are presented to improve the efficiency and accuracy of deep neural networks, especially for the scenario of continual learning.

Contributors

Agent

Created

Date Created
  • 2020

158748-Thumbnail Image.png

Wireless Wearable Sensor to Characterize Respiratory Behaviors

Description

Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are

Respiratory behavior provides effective information to characterize lung functionality, including respiratory rate, respiratory profile, and respiratory volume. Current methods have limited capabilities of continuous characterization of respiratory behavior and are primarily targeting the measurement of respiratory rate, which has relatively less value in clinical application. In this dissertation, a wireless wearable sensor on a paper substrate is developed to continuously characterize respiratory behavior and deliver clinically relevant parameters, contributing to asthma control. Based on the anatomical analysis and experimental results, the optimum site for the wireless wearable sensor is on the midway of the xiphoid process and the costal margin, corresponding to the abdomen-apposed rib cage. At the wearing site, the linear strain change during respiration is measured and converted to lung volume by the wireless wearable sensor utilizing a distance-elapsed ultrasound. An on-board low-power Bluetooth module transmits the temporal lung volume change to a smartphone, where a custom-programmed app computes to show the clinically relevant parameters, such as forced vital capacity (FVC) and forced expiratory volume delivered in the first second (FEV1) and the FEV1/FVC ratio. Enhanced by a simple, yet effective machine-learning algorithm, a system consisting of two wireless wearable sensors accurately extracts respiratory features and classifies the respiratory behavior within four postures among different subjects, demonstrating that the respiratory behaviors are individual- and posture-dependent contributing to monitoring the posture-related respiratory diseases. The continuous and accurate monitoring of respiratory behaviors can track the respiratory disorders and diseases' progression for timely and objective approaches for control and management.

Contributors

Agent

Created

Date Created
  • 2020