Matching Items (24)
161846-Thumbnail Image.png
Description
Complex systems appear when interaction among system components creates emergent behavior that is difficult to be predicted from component properties. The growth of Internet of Things (IoT) and embedded technology has increased complexity across several sectors (e.g., automotive, aerospace, agriculture, city infrastructures, home technologies, healthcare) where the paradigm of cyber-physical

Complex systems appear when interaction among system components creates emergent behavior that is difficult to be predicted from component properties. The growth of Internet of Things (IoT) and embedded technology has increased complexity across several sectors (e.g., automotive, aerospace, agriculture, city infrastructures, home technologies, healthcare) where the paradigm of cyber-physical systems (CPSs) has become a standard. While CPS enables unprecedented capabilities, it raises new challenges in system design, certification, control, and verification. When optimizing system performance computationally expensive simulation tools are often required, and search algorithms that sequentially interrogate a simulator to learn promising solutions are in great demand. This class of algorithms are black-box optimization techniques. However, the generality that makes black-box optimization desirable also causes computational efficiency difficulties when applied real problems. This thesis focuses on Bayesian optimization, a prominent black-box optimization family, and proposes new principles, translated in implementable algorithms, to scale Bayesian optimization to highly expensive, large scale problems. Four problem contexts are studied and approaches are proposed for practically applying Bayesian optimization concepts, namely: (1) increasing sample efficiency of a highly expensive simulator in the presence of other sources of information, where multi-fidelity optimization is used to leverage complementary information sources; (2) accelerating global optimization in the presence of local searches by avoiding over-exploitation with adaptive restart behavior; (3) scaling optimization to high dimensional input spaces by integrating Game theoretic mechanisms with traditional techniques; (4) accelerating optimization by embedding function structure when the reward function is a minimum of several functions. In the first context this thesis produces two multi-fidelity algorithms, a sample driven and model driven approach, and is implemented to optimize a serial production line; in the second context the Stochastic Optimization with Adaptive Restart (SOAR) framework is produced and analyzed with multiple applications to CPS falsification problems; in the third context the Bayesian optimization with sample fictitious play (BOFiP) algorithm is developed with an implementation in high-dimensional neural network training; in the last problem context the minimum surrogate optimization (MSO) framework is produced and combined with both Bayesian optimization and the SOAR framework with applications in simultaneous falsification of multiple CPS requirements.
ContributorsMathesen, Logan (Author) / Pedrielli, Giulia (Thesis advisor) / Candan, Kasim (Committee member) / Fainekos, Georgios (Committee member) / Gel, Esma (Committee member) / Montgomery, Douglas (Committee member) / Zabinsky, Zelda (Committee member) / Arizona State University (Publisher)
Created2021
153969-Thumbnail Image.png
Description
Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict potential security breaches in critical cloud infrastructures. To achieve such prediction, it is envisioned to develop a probabilistic modeling approach with the capability of accurately capturing system-wide causal relationship among the observed operational behaviors in the critical cloud infrastructure and accurately capturing probabilistic human (users’) behaviors on subsystems as the subsystems are directly interacting with humans. In our conceptual approach, the system-wide causal relationship can be captured by the Bayesian network, and the probabilistic human behavior in the subsystems can be captured by the Markov Decision Processes. The interactions between the dynamically changing state graphs of Markov Decision Processes and the dynamic causal relationships in Bayesian network are key components in such probabilistic modelling applications. In this thesis, two techniques are presented for supporting the above vision to prediction of potential security breaches in critical cloud infrastructures. The first technique is for evaluation of the conformance of the Bayesian network with the multiple MDPs. The second technique is to evaluate the dynamically changing Bayesian network structure for conformance with the rules of the Bayesian network using a graph checker algorithm. A case study and its simulation are presented to show how the two techniques support the specific parts in our conceptual approach to predicting system-wide security breaches in critical cloud infrastructures.
ContributorsNagaraja, Vinjith (Author) / Yau, Stephen S. (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2015
151407-Thumbnail Image.png
Description
Recommender systems are a type of information filtering system that suggests items that may be of interest to a user. Most information retrieval systems have an overwhelmingly large number of entries. Most users would experience information overload if they were forced to explore the full set of results. The goal

Recommender systems are a type of information filtering system that suggests items that may be of interest to a user. Most information retrieval systems have an overwhelmingly large number of entries. Most users would experience information overload if they were forced to explore the full set of results. The goal of recommender systems is to overcome this limitation by predicting how users will value certain items and returning the items that should be of the highest interest to the user. Most recommender systems collect explicit user feedback, such as a rating, and attempt to optimize their model to this rating value. However, there is potential for a system to collect implicit user feedback, such as user purchases and clicks, to learn user preferences. Additionally with implicit user feedback, it is possible for the system to remember the context of user feedback in terms of which other items a user was considering when making their decisions. When considering implicit user feedback, only a subset of all evaluation techniques can be used. Currently, sufficient evaluation techniques for evaluating implicit user feedback do not exist. In this thesis, I introduce a new model for recommendation that borrows the idea of opportunity cost from economics. There are two variations of the model, one considering context and one that does not. Additionally, I propose a new evaluation measure that works specifically for the case of implicit user feedback.
ContributorsAckerman, Brian (Author) / Chen, Yi (Thesis advisor) / Candan, Kasim (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2012
190926-Thumbnail Image.png
Description
The evolution of technology, including the proliferation of the Internet of Things (IoT), advanced sensors, intelligent systems, and more, has paved the way for the establishment of smart homes. These homes bring a new era of automation with interconnected devices, offering increased services. However, they also introduce data security and

The evolution of technology, including the proliferation of the Internet of Things (IoT), advanced sensors, intelligent systems, and more, has paved the way for the establishment of smart homes. These homes bring a new era of automation with interconnected devices, offering increased services. However, they also introduce data security and device management challenges. Current smart home technologies are susceptible to security violations, leaving users vulnerable to data compromise, privacy invasions, and physical risks. These systems often fall short in implementing stringent data security safeguards, and the user control process is complex. In this thesis, an approach is presented to improve smart home security by integrating private blockchain technology with situational awareness access control. Using blockchain technology ensures transparency and immutability in data transactions. Transparency from the blockchain enables meticulous tracking of data access, modifications, and policy changes. The immutability of blockchain is utilized to strengthen the integrity of data, deterring, and preventing unauthorized alterations. While the designed solution leverages these specific blockchain features, it consciously does not employ blockchain's decentralization due to the limited computational resources of IoT devices and the focused requirement for centralized management within a smart home context. Additionally, situational awareness facilitates the dynamic adaptation of access policies. The strategies in this thesis excel beyond existing solutions, providing fine-grained access control, reliable transaction data storage, data ownership, audibility, transparency, access policy, and immutability. This approach is thoroughly evaluated against existing smart home security improvement solutions.
ContributorsLin, Zhicheng (Author) / Yau, Stephen S. (Thesis advisor) / Baek, Jaejong (Committee member) / Ghayekhloo, Samira (Committee member) / Arizona State University (Publisher)
Created2023