Matching Items (12)
153303-Thumbnail Image.png
Description
Skyline queries are a well-established technique used in multi criteria decision applications. There is a recent interest among the research community to efficiently compute skylines but the problem of presenting the skyline that takes into account the preferences of the user is still open. Each user has varying interests towards

Skyline queries are a well-established technique used in multi criteria decision applications. There is a recent interest among the research community to efficiently compute skylines but the problem of presenting the skyline that takes into account the preferences of the user is still open. Each user has varying interests towards each attribute and hence "one size fits all" methodology might not satisfy all the users. True user satisfaction can be obtained only when the skyline is tailored specifically for each user based on his preferences.



This research investigates the problem of preference aware skyline processing which consists of inferring the preferences of users and computing a skyline specific to that user, taking into account his preferences. This research proposes a model that transforms the data from a given space to a user preferential space where each attribute represents the preference of the user. This study proposes two techniques "Preferential Skyline Processing" and "Latent Skyline Processing" to efficiently compute preference aware skylines in the user preferential space. Finally, through extensive experiments and performance analysis the correctness of the recommendations and the algorithm's ability to outperform the naïve ones is confirmed.
ContributorsRathinavelu, Sriram (Author) / Candan, Kasim Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2014
153229-Thumbnail Image.png
Description
Skyline queries extract interesting points that are non-dominated and help paint the bigger picture of the data in question. They are valuable in many multi-criteria decision applications and are becoming a staple of decision support systems.

An assumption commonly made by many skyline algorithms is that a skyline query is applied

Skyline queries extract interesting points that are non-dominated and help paint the bigger picture of the data in question. They are valuable in many multi-criteria decision applications and are becoming a staple of decision support systems.

An assumption commonly made by many skyline algorithms is that a skyline query is applied to a single static data source or data stream. Unfortunately, this assumption does not hold in many applications in which a skyline query may involve attributes belonging to multiple data sources and requires a join operation to be performed before the skyline can be produced. Recently, various skyline-join algorithms have been proposed to address this problem in the context of static data sources. However, these algorithms suffer from several drawbacks: they often need to scan the data sources exhaustively to obtain the skyline-join results; moreover, the pruning techniques employed to eliminate tuples are largely based on expensive tuple-to-tuple comparisons. On the other hand, most data stream techniques focus on single stream skyline queries, thus rendering them unsuitable for skyline-join queries.

Another assumption typically made by most of the earlier skyline algorithms is that the data is complete and all skyline attribute values are available. Due to this constraint, these algorithms cannot be applied to incomplete data sources in which some of the attribute values are missing and are represented by NULL values. There exists a definition of dominance for incomplete data, but this leads to undesirable consequences such as non-transitive and cyclic dominance relations both of which are detrimental to skyline processing.

Based on the aforementioned observations, the main goal of the research described in this dissertation is the design and development of a framework of skyline operators that effectively handles three distinct types of skyline queries: 1) skyline-join queries on static data sources, 2) skyline-window-join queries over data streams, and 3) strata-skyline queries on incomplete datasets. This dissertation presents the unique challenges posed by these skyline queries and addresses the shortcomings of current skyline techniques by proposing efficient methods to tackle the added overhead in processing skyline queries on static data sources, data streams, and incomplete datasets.
ContributorsNagendra, Mithila (Author) / Candan, Kasim Selcuk (Thesis advisor) / Chen, Yi (Committee member) / Davulcu, Hasan (Committee member) / Silva, Yasin N. (Committee member) / Sundaram, Hari (Committee member) / Arizona State University (Publisher)
Created2014
149972-Thumbnail Image.png
Description
Templates are wildly used in Web sites development. Finding the template for a given set of Web pages could be very important and useful for many applications like Web page classification and monitoring content and structure changes of Web pages. In this thesis, two novel sequence-based Web page template detection

Templates are wildly used in Web sites development. Finding the template for a given set of Web pages could be very important and useful for many applications like Web page classification and monitoring content and structure changes of Web pages. In this thesis, two novel sequence-based Web page template detection algorithms are presented. Different from tree mapping algorithms which are based on tree edit distance, sequence-based template detection algorithms operate on the Prüfer/Consolidated Prüfer sequences of trees. Since there are one-to-one correspondences between Prüfer/Consolidated Prüfer sequences and trees, sequence-based template detection algorithms identify the template by finding a common subsequence between to Prüfer/Consolidated Prüfer sequences. This subsequence should be a sequential representation of a common subtree of input trees. Experiments on real-world web pages showed that our approaches detect templates effectively and efficiently.
ContributorsHuang, Wei (Author) / Candan, Kasim Selcuk (Thesis advisor) / Sundaram, Hari (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011
150147-Thumbnail Image.png
Description
Navigating within non-linear structures is a challenge for all users when the space is large but the problem is most pronounced when the users are blind or visually impaired. Such users access digital content through screen readers like JAWS which read out the text on the screen. However presentation of

Navigating within non-linear structures is a challenge for all users when the space is large but the problem is most pronounced when the users are blind or visually impaired. Such users access digital content through screen readers like JAWS which read out the text on the screen. However presentation of non-linear narratives in such a manner without visual cues and information about spatial dependencies is very inefficient for such users. The NSDL Science Literacy StrandMaps are visual layouts to help students and teachers browse educational resources. A Strandmap shows relationships between concepts and how they build upon one another across grade levels. NSDL Strandmaps are non-linear narratives which need to be presented to users who are blind in an effective way. A good summary of the Strandmap can give the users an idea about the concepts that are explained in it. This can help them decide whether to view the map or not. In addition, a preview-based navigation mechanism can help users decide which direction they want to take, based on a preview of upcoming content in each direction. Given a non-linear narrative like a Strandmap which has both text and structure, and a word limit w, the goal of this thesis is to find the best way to create its summary. The following approaches are considered: – Purely Text-based Approach using a Multi-document Text Summarizer – Purely Structure-based Approach using PageRank – Approaches Combining both Text and Structure → CUTS-Based Approach (Topic Segmentation) → PageRank with Content Since no reference summaries for such structures were available, user studies were conducted to evaluate these algorithms. PageRank with Content approach performed the best. Another important conclusion was that text and structure are intertwined in a Strandmap by design.
ContributorsGaur, Shruti (Author) / Candan, Kasim Selcuk (Thesis advisor) / Sundaram, Hari (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2011
154174-Thumbnail Image.png
Description
The amount of time series data generated is increasing due to the integration of sensor technologies with everyday applications, such as gesture recognition, energy optimization, health care, video surveillance. The use of multiple sensors simultaneously

for capturing different aspects of the real world attributes has also led to an increase in

The amount of time series data generated is increasing due to the integration of sensor technologies with everyday applications, such as gesture recognition, energy optimization, health care, video surveillance. The use of multiple sensors simultaneously

for capturing different aspects of the real world attributes has also led to an increase in dimensionality from uni-variate to multi-variate time series. This has facilitated richer data representation but also has necessitated algorithms determining similarity between two multi-variate time series for search and analysis.

Various algorithms have been extended from uni-variate to multi-variate case, such as multi-variate versions of Euclidean distance, edit distance, dynamic time warping. However, it has not been studied how these algorithms account for asynchronous in time series. Human gestures, for example, exhibit asynchrony in their patterns as different subjects perform the same gesture with varying movements in their patterns at different speeds. In this thesis, we propose several algorithms (some of which also leverage metadata describing the relationships among the variates). In particular, we present several techniques that leverage the contextual relationships among the variates when measuring multi-variate time series similarities. Based on the way correlation is leveraged, various weighing mechanisms have been proposed that determine the importance of a dimension for discriminating between the time series as giving the same weight to each dimension can led to misclassification. We next study the robustness of the considered techniques against different temporal asynchronies, including shifts and stretching.

Exhaustive experiments were carried on datasets with multiple types and amounts of temporal asynchronies. It has been observed that accuracy of algorithms that rely on data to discover variate relationships can be low under the presence of temporal asynchrony, whereas in case of algorithms that rely on external metadata, robustness against asynchronous distortions tends to be stronger. Specifically, algorithms using external metadata have better classification accuracy and cluster separation than existing state-of-the-art work, such as EROS, PCA, and naive dynamic time warping.
ContributorsGarg, Yash (Author) / Candan, Kasim Selcuk (Thesis advisor) / Chowell-Punete, Gerardo (Committee member) / Tong, Hanghang (Committee member) / Davulcu, Hasan (Committee member) / Sapino, Maria Luisa (Committee member) / Arizona State University (Publisher)
Created2015
156943-Thumbnail Image.png
Description
The spatial databases are used to store geometric objects such as points, lines, polygons. Querying such complex spatial objects becomes a challenging task. Index structures are used to improve the lookup performance of the stored objects in the databases, but traditional index structures cannot perform well in case of spatial

The spatial databases are used to store geometric objects such as points, lines, polygons. Querying such complex spatial objects becomes a challenging task. Index structures are used to improve the lookup performance of the stored objects in the databases, but traditional index structures cannot perform well in case of spatial databases. A significant amount of research is made to ingest, index and query the spatial objects based on different types of spatial queries, such as range, nearest neighbor, and join queries. Compressed Spatial Bitmap Index (cSHB) structure is one such example of indexing and querying approach that supports spatial range query workloads (set of queries). cSHB indexes and many other approaches lack parallel computation. The massive amount of spatial data requires a lot of computation and traditional methods are insufficient to address these issues. Other existing parallel processing approaches lack in load-balancing of parallel tasks which leads to resource overloading bottlenecks.

In this thesis, I propose novel spatial partitioning techniques, Max Containment Clustering and Max Containment Clustering with Separation, to create load-balanced partitions of a range query workload. Each partition takes a similar amount of time to process the spatial queries and reduces the response latency by minimizing the disk access cost and optimizing the bitmap operations. The partitions created are processed in parallel using cSHB indexes. The proposed techniques utilize the block-based organization of bitmaps in the cSHB index and improve the performance of the cSHB index for processing a range query workload.
ContributorsGadkari, Ashish (Author) / Candan, Kasim Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sapino, Maria Luisa (Committee member) / Arizona State University (Publisher)
Created2018
152127-Thumbnail Image.png
Description
In recent years, there are increasing numbers of applications that use multi-variate time series data where multiple uni-variate time series coexist. However, there is a lack of systematic of multi-variate time series. This thesis focuses on (a) defining a simplified inter-related multi-variate time series (IMTS) model and (b) developing robust

In recent years, there are increasing numbers of applications that use multi-variate time series data where multiple uni-variate time series coexist. However, there is a lack of systematic of multi-variate time series. This thesis focuses on (a) defining a simplified inter-related multi-variate time series (IMTS) model and (b) developing robust multi-variate temporal (RMT) feature extraction algorithm that can be used for locating, filtering, and describing salient features in multi-variate time series data sets. The proposed RMT feature can also be used for supporting multiple analysis tasks, such as visualization, segmentation, and searching / retrieving based on multi-variate time series similarities. Experiments confirm that the proposed feature extraction algorithm is highly efficient and effective in identifying robust multi-scale temporal features of multi-variate time series.
ContributorsWang, Xiaolan (Author) / Candan, Kasim Selcuk (Thesis advisor) / Sapino, Maria Luisa (Committee member) / Fainekos, Georgios (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
147738-Thumbnail Image.png
Description

Covid-19 is unlike any coronavirus we have seen before, characterized mostly by the ease with which it spreads. This analysis utilizes an SEIR model built to accommodate various populations to understand how different testing and infection rates may affect hospitalization and death. This analysis finds that infection rates have a

Covid-19 is unlike any coronavirus we have seen before, characterized mostly by the ease with which it spreads. This analysis utilizes an SEIR model built to accommodate various populations to understand how different testing and infection rates may affect hospitalization and death. This analysis finds that infection rates have a significant impact on Covid-19 impact regardless of the population whereas the impact that testing rates have in this simulation is not as pronounced. Thus, policy-makers should focus on decreasing infection rates through targeted lockdowns and vaccine rollout to contain the virus, and decrease its spread.

Created2021-05
154272-Thumbnail Image.png
Description
Similarity search in high-dimensional spaces is popular for applications like image

processing, time series, and genome data. In higher dimensions, the phenomenon of

curse of dimensionality kills the effectiveness of most of the index structures, giving

way to approximate methods like Locality Sensitive Hashing (LSH), to answer similarity

searches. In addition to range searches

Similarity search in high-dimensional spaces is popular for applications like image

processing, time series, and genome data. In higher dimensions, the phenomenon of

curse of dimensionality kills the effectiveness of most of the index structures, giving

way to approximate methods like Locality Sensitive Hashing (LSH), to answer similarity

searches. In addition to range searches and k-nearest neighbor searches, there

is a need to answer negative queries formed by excluded regions, in high-dimensional

data. Though there have been a slew of variants of LSH to improve efficiency, reduce

storage, and provide better accuracies, none of the techniques are capable of

answering queries in the presence of excluded regions.

This thesis provides a novel approach to handle such negative queries. This is

achieved by creating a prefix based hierarchical index structure. First, the higher

dimensional space is projected to a lower dimension space. Then, a one-dimensional

ordering is developed, while retaining the hierarchical traits. The algorithm intelligently

prunes the irrelevant candidates while answering queries in the presence of

excluded regions. While naive LSH would need to filter out the negative query results

from the main results, the new algorithm minimizes the need to fetch the redundant

results in the first place. Experiment results show that this reduces post-processing

cost thereby reducing the query processing time.
ContributorsBhat, Aneesha (Author) / Candan, Kasim Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sapino, Maria Luisa (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2016
158298-Thumbnail Image.png
Description
In the presence of big data analysis, large volume of data needs to be systematically indexed to support analytical tasks, such as feature engineering, pattern recognition, data mining, and query processing. The volume, variety, and velocity of these data necessitate sophisticated systems to help researchers understand, analyze, and dis- cover

In the presence of big data analysis, large volume of data needs to be systematically indexed to support analytical tasks, such as feature engineering, pattern recognition, data mining, and query processing. The volume, variety, and velocity of these data necessitate sophisticated systems to help researchers understand, analyze, and dis- cover insights from heterogeneous, multidimensional data sources. Many analytical frameworks have been proposed in the literature in recent years, but challenges to accuracy, speed, and effectiveness remain hence a systematic approach to perform data signature computation and query processing in multi-dimensional space is in people’s interest. In particular, real-time and near real-time queries pose significant challenges when working with large data sets.

To address these challenges, I develop an innovative robust multi-variate fea- ture extraction algorithm over multi-dimensional temporal datasets, which is able to help understand and analyze various real-world applications. Furthermore, to an- swer queries over these features, I develop a novel resource-aware indexing framework to approximately solve top-k queries by leveraging onion-layer indexing in conjunc- tion with locality sensitive hashing. The proposed indexing scheme allows people to answer top-k queries by only accessing a bounded amount of data, which optimizes big data small for queries.
ContributorsLiu, Sicong (Author) / Candan, Kasim Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sapino, Maria Luisa (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2020