Matching Items (472)
Filtering by

Clear all filters

152136-Thumbnail Image.png
Description
Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving

Reductive dechlorination by members of the bacterial genus Dehalococcoides is a common and cost-effective avenue for in situ bioremediation of sites contaminated with the chlorinated solvents, trichloroethene (TCE) and perchloroethene (PCE). The overarching goal of my research was to address some of the challenges associated with bioremediation timeframes by improving the rates of reductive dechlorination and the growth of Dehalococcoides in mixed communities. Biostimulation of contaminated sites or microcosms with electron donor fails to consistently promote dechlorination of PCE/TCE beyond cis-dichloroethene (cis-DCE), even when the presence of Dehalococcoides is confirmed. Supported by data from microcosm experiments, I showed that the stalling at cis-DCE is due a H2 competition in which components of the soil or sediment serve as electron acceptors for competing microorganisms. However, once competition was minimized by providing selective enrichment techniques, I illustrated how to obtain both fast rates and high-density Dehalococcoides using three distinct enrichment cultures. Having achieved a heightened awareness of the fierce competition for electron donor, I then identified bicarbonate (HCO3-) as a potential H2 sink for reductive dechlorination. HCO3- is the natural buffer in groundwater but also the electron acceptor for hydrogenotrophic methanogens and homoacetogens, two microbial groups commonly encountered with Dehalococcoides. By testing a range of concentrations in batch experiments, I showed that methanogens are favored at low HCO3 and homoacetogens at high HCO3-. The high HCO3- concentrations increased the H2 demand which negatively affected the rates and extent of dechlorination. By applying the gained knowledge on microbial community management, I ran the first successful continuous stirred-tank reactor (CSTR) at a 3-d hydraulic retention time for cultivation of dechlorinating cultures. I demonstrated that using carefully selected conditions in a CSTR, cultivation of Dehalococcoides at short retention times is feasible, resulting in robust cultures capable of fast dechlorination. Lastly, I provide a systematic insight into the effect of high ammonia on communities involved in dechlorination of chloroethenes. This work documents the potential use of landfill leachate as a substrate for dechlorination and an increased tolerance of Dehalococcoides to high ammonia concentrations (2 g L-1 NH4+-N) without loss of the ability to dechlorinate TCE to ethene.
ContributorsDelgado, Anca Georgiana (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Halden, Rolf U. (Committee member) / Rittmann, Bruce E. (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
153405-Thumbnail Image.png
Description
Despite the breadth of studies investigating ecosystem development, an underlying theory guiding this process remains elusive. Several principles have been proposed to explain ecosystem development, though few have garnered broad support in the literature. I used boreal wetland soils as a study system to test a notable goal oriented principle:

Despite the breadth of studies investigating ecosystem development, an underlying theory guiding this process remains elusive. Several principles have been proposed to explain ecosystem development, though few have garnered broad support in the literature. I used boreal wetland soils as a study system to test a notable goal oriented principle: The Maximum Power Principle (MPP). The MPP posits that ecosystems, and in fact all energy systems, develop to maximize power production or the rate of energy production. I conducted theoretical and empirical investigations to test the MPP in northern wetlands.

Permafrost degradation is leading to rapid wetland formation in northern peatland ecosystems, altering the role of these ecosystems in the global carbon cycle. I reviewed the literature on the history of the MPP theory, including tracing its origins to The Second Law of Thermodynamics. To empirically test the MPP, I collected soils along a gradient of ecosystem development and: 1) quantified the rate of adenosine triphosphate (ATP) production--literally cellular energy--to test the MPP; 2) quantified greenhouse gas production (CO2, CH4, and N2O) and microbial genes that produce enzymes catalyzing greenhouse gas production, and; 3) sequenced the 16s rRNA gene from soil microbes to investigate microbial community composition across the chronosequence of wetland development. My results suggested that the MPP and other related theoretical constructs have strong potential to further inform our understanding of ecosystem development. Soil system power (ATP) decreased temporarily as the ecosystem reorganized after disturbance to rates of power production that approached pre-disturbance levels. Rates of CH4 and N2O production were higher at the newly formed bog and microbial genes involved with greenhouse gas production were strongly related to the amount of greenhouse gas produced. DNA sequencing results showed that across the chronosequence of development, the two relatively mature ecosystems--the peatland forest ecosystem prior to permafrost degradation and the oldest bog--were more similar to one another than to the intermediate, less mature bog. Collectively, my results suggest that ecosystem age, rather than ecosystem state, was a more important driver for ecosystem structure and function.
ContributorsChapman, Eric (Author) / Childers, Daniel L. (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Hall, Sharon J (Committee member) / Turetsky, Merritt (Committee member) / Arizona State University (Publisher)
Created2015
156721-Thumbnail Image.png
Description
Peatlands represent 3% of the earth’s surface but have been estimated to contain up to 30% of all terrestrial soil organic carbon and release an estimated 40% of global atmospheric CH4 emissions. Contributors to the production of CH4 are methanogenic Archaea through a coupled metabolic dependency of end products released

Peatlands represent 3% of the earth’s surface but have been estimated to contain up to 30% of all terrestrial soil organic carbon and release an estimated 40% of global atmospheric CH4 emissions. Contributors to the production of CH4 are methanogenic Archaea through a coupled metabolic dependency of end products released by heterotrophic bacteria within the soil in the absence of O2. To better understand how neighboring bacterial communities can influence methanogenesis, the isolation and physiological characterization of two novel isolates, one Methanoarchaeal isolate and one Acidobacterium isolate identified as QU12MR and R28S, respectively, were targeted in this present study. Co-culture growth in varying temperatures of the QU12MR isolate paired with an isolated Clostridium species labeled R32Q and the R28S isolate were also investigated for possible influences in CH4 production. Phylogenetic analysis of strain QU12MR was observed as a member of genus Methanobacterium sharing 98% identity similar to M. arcticum strain M2 and 99% identity similar to M. uliginosum strain P2St. Phylogenetic analysis of strain R28S was associated with genus Acidicapsa from the phylum Acidobacteria, sharing 97% identity to A. acidisoli strain SK-11 and 96% identity similarity to Occallatibacter savannae strain A2-1c. Bacterial co-culture growth and archaeal CH4 production was present in the five temperature ranges tested. However, bacterial growth and archaeal CH4 production was less than what was observed in pure culture analysis after 21 days of incubation.
ContributorsRamirez, Zeni Elizia (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Roberson, Robert (Thesis advisor) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2018
156969-Thumbnail Image.png
Description
Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging in pH from < 2 to > 9 and in

Utilizing both 16S and 18S rRNA sequencing alongside energetic calculations from geochemical measurements offers a bridged perspective of prokaryotic and eukaryotic community diversities and their relationships to geochemical diversity. Yellowstone National Park hot spring outflows from varied geochemical compositions, ranging in pH from < 2 to > 9 and in temperature from < 30°C to > 90°C, were sampled across the photosynthetic fringe, a transition in these outflows from exclusively chemosynthetic microbial communities to those that include photosynthesis. Illumina sequencing was performed to document the diversity of both prokaryotes and eukaryotes above, at, and below the photosynthetic fringe of twelve hot spring systems. Additionally, field measurements of dissolved oxygen, ferrous iron, and total sulfide were combined with laboratory analyses of sulfate, nitrate, total ammonium, dissolved inorganic carbon, dissolved methane, dissolved hydrogen, and dissolved carbon monoxide were used to calculate the available energy from 58 potential metabolisms. Results were ranked to identify those that yield the most energy according to the geochemical conditions of each system. Of the 46 samples taken across twelve systems, all showed the greatest energy yields using oxygen as the main electron acceptor, followed by nitrate. On the other hand, ammonium or ammonia, depending on pH, showed the greatest energy yields as an electron donor, followed by H2S or HS-. While some sequenced taxa reflect potential biotic participants in the sulfur cycle of these hot spring systems, many sample locations that yield the most energy from ammonium/ammonia oxidation have low relative abundances of known ammonium/ammonia oxidizers, indicating potentially untapped sources of chemotrophic energy or perhaps poorly understood metabolic capabilities of cultured chemotrophs.
ContributorsRomero, Joseph Thomas (Author) / Shock, Everett L (Thesis advisor) / Cadillo-Quiroz, Hinsby (Committee member) / Till, Christy B. (Committee member) / Arizona State University (Publisher)
Created2018
133369-Thumbnail Image.png
Description
Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate

Breast microcalcifications are a potential indicator of cancerous tumors. Current visualization methods are either uncomfortable or impractical. Impedance measurement studies have been performed, but not in a clinical setting due to a low sensitivity and specificity. We are hoping to overcome this challenge with the development of a highly accurate impedance probe on a biopsy needle. With this technique, microcalcifications and the surrounding tissue could be differentiated in an efficient and comfortable manner than current techniques for biopsy procedures. We have developed and tested a functioning prototype for a biopsy needle using bioimpedance sensors to detect microcalcifications in the human body. In the final prototype a waveform generator sends a sin wave at a relatively low frequency(<1KHz) into the pre-amplifier, which both stabilizes and amplifies the signal. A modified howland bridge is then used to achieve a steady AC current through the electrodes. The voltage difference across the electrodes is then used to calculate the impedance being experienced between the electrodes. In our testing, the microcalcifications we are looking for have a noticeably higher impedance than the surrounding breast tissue, this spike in impedance is used to signal the presence of the calcifications, which are then sampled for examination by radiology.
ContributorsWen, Robert Bobby (Co-author) / Grula, Adam (Co-author) / Vergara, Marvin (Co-author) / Ramkumar, Shreya (Co-author) / Kozicki, Michael (Thesis director) / Ranjani, Kumaran (Committee member) / School of Molecular Sciences (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133376-Thumbnail Image.png
Description
Breastfeeding has been shown by a number of studies to have numerous benefits on both the mother and the infant. Major health organizations such as the World Health Organization (WHO), now agree that breastfeeding should be encouraged and supported in all countries. But like many things, the wheels of the

Breastfeeding has been shown by a number of studies to have numerous benefits on both the mother and the infant. Major health organizations such as the World Health Organization (WHO), now agree that breastfeeding should be encouraged and supported in all countries. But like many things, the wheels of the law are slow to catch up with scientific evident. Although breastfeeding is supported, working women do not have the option of breastfeeding without consequences. For example, in 2003, Kirstie Marshall, a then member of parliament in Australia was ejected from the lower house chamber on February 23, for breastfeeding her baby [3]. According to standing order 30 at the time, "Unless by order of the House, no Member of this House shall presume to bring any stranger into any part of the House appropriated to the Members of this House while the House, or a Committee of the whole House, is sitting" [3]. The rules did not specify the age of strangers, so the then 11-day-old baby, Charlotte Louise and her mother were shown the exit door of parliament. She had to choose between being present at times of major discussions or leaving the house to breastfeed her child, she chose to leave. More recent statistics show that developed nations like the US and Australia which also have high rates of women employment had low rates of breastfeeding. This might mean that workplace policies do not favor breastfeeding or expressing milk at work. Fortunately, laws have since been introduced in both the United States and Australia that support breastfeeding at the workplace. The next step would be to access how these laws affect breastfeeding statistics and how variation between these two countries like the paid parental leave in Australia (which is not present in all US states) would affect these numbers.
ContributorsSakala, Lydia (Author) / Alison, Alison (Thesis director) / Reddy, Swapna (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
131532-Thumbnail Image.png
Description
Ketone bodies are produced in the liver from the acetyl CoA derived from fatty acids that cannot enter the Krebs cycle. This is a sub-analysis of a larger study which had numerous outcome markers. This analysis focuses on the relationship between ketone blood levels and cognition. The study looked at

Ketone bodies are produced in the liver from the acetyl CoA derived from fatty acids that cannot enter the Krebs cycle. This is a sub-analysis of a larger study which had numerous outcome markers. This analysis focuses on the relationship between ketone blood levels and cognition. The study looked at the relationship between Time Restricted Feeding (TRF), a method of intermittent fasting. TRF is something that can be easily adapted into an individual’s lifestyle and has been shown to have multiple advantages. This 8-week study began with 23 enrolled participants, but due to COVID-19 only 11 participants could be tested for cognition and blood ketone levels after week 4. All participants had similar ranges of weight, height, age, BMI, hip, and waist measurements at baseline. Moreover, these demographic variables were not related to ketone levels or cognition. The data indicate that ketone bodies increased in participants practicing TRF and that the increase in ketone bodies in the blood, specifically β-hydroxybutyrate was strongly correlated to increased cognitive function. This is consistent with theories that elevated ketone levels allowed for early hunter-gather communities and other mammals to survive prolonged periods of nutrient deprivation while keeping high cognitive function.
ContributorsTaha, Basel Mahmoud (Author) / Johnston, Carol (Thesis director) / Karen, Sweazea (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133885-Thumbnail Image.png
Description
The purpose of this thesis experiment was to design and create an Acoustically Active Cannula (AAC), which is furnished by a piezoelectric crystal placed at its tip that produces an acoustic navigation signal. I tested the functionality of the cannula in vitro and demonstrated its navigational abilities in vivo in

The purpose of this thesis experiment was to design and create an Acoustically Active Cannula (AAC), which is furnished by a piezoelectric crystal placed at its tip that produces an acoustic navigation signal. I tested the functionality of the cannula in vitro and demonstrated its navigational abilities in vivo in anesthetized pigs. This experiment was based upon ultrasound science and technology, and thus some practical experience with conventional (B-mode) and Doppler ultrasound was achieved as well. The results of bench and experimental animal studies indicated proper functionality of the AAC for identification and spatial navigation of its tip with color Doppler ultrasound imaging.
ContributorsShamsa, Kayvan (Author) / Tyler, William (Thesis director) / Belohlavek, Marek (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133889-Thumbnail Image.png
Description
The academic study of eSports, or professional competition through the medium of video games, has tended to focus on players' motivations to play and watch eSports as well as marketing concerns of huge eSports corporations. Instead of utilizing marketing or psychology to analyze this phenomenon, I investigate three areas of

The academic study of eSports, or professional competition through the medium of video games, has tended to focus on players' motivations to play and watch eSports as well as marketing concerns of huge eSports corporations. Instead of utilizing marketing or psychology to analyze this phenomenon, I investigate three areas of focus in accordance with available literature: the fans and their characteristics, the design of the game itself, and the relationship between fans and the game's developer. This investigation was conducted by first examining existing literature surrounding eSports fans, then collecting public domain data such as Reddit posts, forum posts, and YouTube videos, and last by studying interviews with developers and players. With this thesis, I apply a fan studies approach to eSports by creating a series of indicators based in each of the three focus areas which can be utilized as a systematic method of evaluating an eSport's popularity and growth.
ContributorsHilliker, Noah Henry (Author) / Ingram-Waters, Mary (Thesis director) / Schmidt, Peter (Committee member) / Anderson, Sky (Committee member) / School of Molecular Sciences (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134159-Thumbnail Image.png
DescriptionThis project is designed to generate enthusiasm for science among refugee students in hopes of inspiring them to continue learning science as well as to help them with their current understanding of their school science subject matter.
ContributorsSipes, Shannon Paige (Author) / O'Flaherty, Katherine (Thesis director) / Gregg, George (Committee member) / School of Molecular Sciences (Contributor) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12