Matching Items (19)
153338-Thumbnail Image.png
Description
Small molecules have proven to be very important tools for exploration of biological systems including diagnosis and treatment of lethal diseases like cancer. Fluorescent probes have been extensively used to further amplify the utilization of small molecules. The manipulation of naturally occurring biological targets with the help of synthetic compounds

Small molecules have proven to be very important tools for exploration of biological systems including diagnosis and treatment of lethal diseases like cancer. Fluorescent probes have been extensively used to further amplify the utilization of small molecules. The manipulation of naturally occurring biological targets with the help of synthetic compounds is the focus of the work described in this thesis.

Bleomycins (BLMs) are a class of water soluble, glycopeptide-derived antitumor antibiotics consisting of a structurally complicated unnatural hexapeptide and a disaccharide, clinically used as an anticancer chemotherapeutic agent at an exceptionally low therapeutic dose. The efficiency of BLM is likely achieved both by selective localization within tumor cells and selective binding to DNA followed by efficient double-strand cleavage. The disaccharide moiety is responsible for the tumor cell targeting properties of BLM. A recent study showed that both BLM and its disaccharide, conjugated to the cyanine dye Cy5**, bound selectively to cancer cells. Thus, the disaccharide moiety alone recapitulates the tumor cell targeting properties of BLM. Work presented here describes the synthesis of the fluorescent carbohydrate conjugates. A number of dye-labeled modified disaccharides and monosaccharides were synthesized to study the nature of the participation of the carbamoyl moiety in the mechanism of tumor cell recognition and uptake by BLM saccharides. It was demonstrated that the carbamoylmannose moiety of BLM is the smallest structural entity capable for the cellular targeting and internalization, and the carbamoyl functionality is indispensible for tumor cell targeting. It was also confirmed that BLM is a modular molecule, composed of a tumor cell targeting moiety (the saccharide) attached to a cytotoxic DNA cleaving domain (the BLM aglycone). These finding encouraged us to further synthesize carbohydrate probes for PET imaging and to conjugate the saccharide moiety with cytotoxins for targeted delivery to tumor cells.

The misacylated suppressor tRNA technique has enabled the site-specific incorporation of noncanonical amino acids into proteins. The focus of the present work was the synthesis of unnatural lysine analogues with nucleophilic properties for incorporation at position 72 of the lyase domain of human DNA polymerase beta, a multifunctional enzyme with dRP lyase and polymerase activity.
ContributorsBhattacharya, Chandrabali (Author) / Hecht, Sidney M. (Thesis advisor) / Moore, Ana (Committee member) / Gould, Ian R (Committee member) / Arizona State University (Publisher)
Created2014
153010-Thumbnail Image.png
Description
The hydrothermal chemistry of organic compounds influences many critical geological processes, including the formation of oil and gas reservoirs, the degradation and transport of organic matter in sedimentary basins, metabolic cycles in the deep subsurface biosphere, and possibly prebiotic organic synthesis related to the origin of life. In most

The hydrothermal chemistry of organic compounds influences many critical geological processes, including the formation of oil and gas reservoirs, the degradation and transport of organic matter in sedimentary basins, metabolic cycles in the deep subsurface biosphere, and possibly prebiotic organic synthesis related to the origin of life. In most previous studies of hydrothermal organic reactions the emphasis has been mainly on determining reaction product distributions, studies that provide detailed mechanistic information or direct evidence for specific reaction intermediates are rare. To develop a better understanding, I performed hydrothermal experiments with model ketone compound dibenzylketone (DBK), which serves as a quite useful tool to probe the bond breaking and forming processes in hydrothermal geochemical transformations. A careful study of reaction kinetics and products of DBK in Chapter 2 of this dissertation reveals reversible and irreversible reaction pathways, and provides evidence for competing ionic and radical reaction mechanisms. The majority of the observed products result from homolytic carbon-carbon and carbon-hydrogen bond cleavage and secondary coupling reactions of the benzyl and related radical intermediates.

In the third chapter of the dissertation, a novel hydrothermal photochemical method is studied, which enabled in situ independent generation of the relevant radicals and effectively separated the radical and ionic reactions that occur simultaneously in pure thermal reactions. In the following chapter, I focus on the role of minerals on ketone hydrothermal reactions. Minerals such as quartz and corundum have no detectable effect on DBK, whereas magnetite, hematite, and troilite all increase ketone reactivity to various extents. The influence of these iron-bearing minerals can be attributed to the mineral surface catalysis or the solution chemistry change that is presumably caused by dissolved inorganic species from minerals. In addition, some new discoveries on strong oxidizing effect of copper (II) ion under hydrothermal conditions are described in the latter chapter of the dissertation, where examples of clean and rapid reactions that converted alcohols to aldehyde and aldehydes to carboxylic acids are included.
ContributorsYang, Ziming (Author) / Shock, Everett L (Thesis advisor) / Gould, Ian R (Committee member) / Wolf, George H. (Committee member) / Arizona State University (Publisher)
Created2014
153176-Thumbnail Image.png
Description
Mitochondria are crucial intracellular organelles which play a pivotal role in providing energy to living organisms in the form of adenosine triphosphate (ATP). The mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation (OX-PHOS) transforms the chemical energy of amino acids, fatty acids and sugars to ATP. The mitochondrial electron

Mitochondria are crucial intracellular organelles which play a pivotal role in providing energy to living organisms in the form of adenosine triphosphate (ATP). The mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation (OX-PHOS) transforms the chemical energy of amino acids, fatty acids and sugars to ATP. The mitochondrial electron transport system consumes nearly 90% of the oxygen used by the cell. Reactive oxygen species (ROS) in the form of superoxide anions (O2*-) are generated as byproduct of cellular metabolism due to leakage of electrons from complex I and complex III to oxygen. Under normal conditions, the effects of ROS are offset by a variety of antioxidants (enzymatic and non-enzymatic).

Mitochondrial dysfunction has been proposed in the etiology of various pathologies, including cardiovascular and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, ischemia-reperfusion (IR) injury, diabetes and aging. To treat these disorders, it is imperative to target mitochondria, especially the electron transport chain. One of the methodologies currently used for the treatment of mitochondrial and neurodegenerative diseases where endogenous antioxidant defenses are inadequate for protecting against ROS involves the administration of exogenous antioxidants.

As part of our pursuit of effective neuroprotective drugs, a series of pyridinol and pyrimidinol analogues have been rationally designed and synthesized. All the analogues were evaluated for their ability to quench lipid peroxidation and reactive oxygen species (ROS), and preserve mitochondrial membrane potential (Δm) and support ATP synthesis. These studies are summarized in Chapter 2.

Drug discovery and lead identification can be reinforced by assessing the metabolic fate of orally administered drugs using simple microsomal incubation experiments. Accordingly, in vitro microsomal studies were designed and carried out using bovine liver microsomes to screen available pyridinol and pyrimidinol analogues for their metabolic lability. The data obtained was utilized for an initial assessment of potential bioavailability of the compounds screened and is summarized fully in Chapter 3.
ContributorsAlam, Mohammad Parvez (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian R (Committee member) / Moore, Ana (Committee member) / Arizona State University (Publisher)
Created2014
153344-Thumbnail Image.png
Description
Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based on electrochemical trapping of carbon dioxide using pyridine and derivatives. Optimization of this process requires a detailed understanding of the mechanisms of the reactions of reduced pyridines with carbon dioxide, which are not currently well known. This thesis describes a detailed mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion of bipyridine as a model pyridine derivative, formed by one-electron reduction, with particular emphasis on the reactions with carbon dioxide. A time-resolved spectroscopic method was used to characterize the key intermediates and determine the kinetics of the reactions of the radical anion and its protonated radical form. Using a pulsed nanosecond laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which allows fast reactions to be monitored in real time. The bipyridine radical anion was found to be a very powerful one-electron donor, Bronsted base and nucleophile. It reacts by addition to the C=O bonds of ketones with a bimolecular rate constant around 1* 107 M-1 s-1. These are among the fastest nucleophilic additions that have been reported in literature. Temperature dependence studies demonstrate very low activation energies and large Arrhenius pre-exponential parameters, consistent with very high reactivity. The kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, where the radical anion acts as a nucleophile, are also characterized by large bimolecular rate constants in the range ca. 106 - 107 M-1 s-1. The pKa of the bipyridine radical anion was measured using a kinetic method and analysis of the data using a Marcus theory model for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in DMSO. The reorganization energy for the proton transfer reaction was found to be 70±5 kJ/mol. The bipyridine radical anion was found to react very rapidly with carbon dioxide, with a bimolecular rate constant of 1* 108 M-1 s-1 and a small activation energy, whereas the protonated radical reacted with carbon dioxide with a rate constant that was too small to measure. The kinetic and thermodynamic data obtained in this work can be used to understand the mechanisms of the reactions of pyridines with carbon dioxide under reducing conditions.
ContributorsRanjan, Rajeev (Author) / Gould, Ian R (Thesis advisor) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeff (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2015
152441-Thumbnail Image.png
Description
Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified

Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified across all gold:silver ratios by a linear shift in the plasmon band maxima against alloy composition. The molar absorptivities of the NPs decreased non-linearly with increasing gold content from 2.0 x 108 M-1 cm-1 (fÉmax = 404 nm) for pure silver to 4.1 x 107 M-1 cm-1 (fÉmax = 511 nm) for pure gold. The NPs were immobilized onto transparent indium-tin oxide composite electrodes using layer-by-layer (LbL) deposition with poly(diallyldimethylammonium) acting as a cationic binder. The UV-Vis absorbance of the LbL film was used to calculate the surface coverage of alloy NPs on the electrode. Typical preparations had average NP surface coverages of 2.8 x 10-13 mol NPs/cm2 (~5% of cubic closest packing) with saturated films reaching ~20% of ccp for single-layer preparations (1.0 ~ 10-12 mol NPs/cm2). X-ray photoelectron spectroscopy confirmed the presence of alloy NPs in the LbL film and showed silver enrichment of the NP surfaces by ~9%. Irreversible oxidative dissolution (dealloying) of the less noble silver atoms from the NPs on LbL electrodes was performed by cyclic voltammetry (CV) in sulfuric acid. Alloy NPs with higher gold content required larger overpotentials for silver dealloying. Dealloying of the more-noble gold atoms from the alloy NPs was also achieved by CV in sodium chloride. The silver was oxidized first to cohesive silver chloride, and then gold dealloyed to soluble HAuCl4- at higher potentials. Silver oxidation was inhibited during the first oxidative scan, but subsequent cycles showed typical, reversible silver-to-silver chloride voltammetry. The potentials for both silver oxidation and gold dealloying also shifted to more oxidizing potentials with increasing gold content, and both processes converged for alloy NPs with >60% gold content. Charge-mediated electrochemistry of silver NPs immobilized in LbL films, using Fc(meOH) as the charge carrier, showed that 67% of the NPs were electrochemically inactive.
ContributorsStarr, Christopher A (Author) / Buttry, Daniel A (Thesis advisor) / Petuskey, William (Committee member) / Jones, Anne (Committee member) / Arizona State University (Publisher)
Created2014
150084-Thumbnail Image.png
Description
Cellular redox phenomena are essential for the life of organisms. Described here is a summary of the synthesis of a number of redox-cycling therapeutic agents. The work centers on the synthesis of antitumor antibiotic bleomycin congeners. In addition, the synthesis of pyridinol analogues of alpha-tocopherol is also described.

Cellular redox phenomena are essential for the life of organisms. Described here is a summary of the synthesis of a number of redox-cycling therapeutic agents. The work centers on the synthesis of antitumor antibiotic bleomycin congeners. In addition, the synthesis of pyridinol analogues of alpha-tocopherol is also described. The bleomycins (BLMs) are a group of glycopeptide antibiotics that have been used clinically to treat several types of cancers. The antitumor activity of BLM is thought to be related to its degradation of DNA, and possibly RNA. Previous studies have indicated that the methylvalerate subunit of bleomycin plays an important role in facilitating DNA cleavage by bleomycin and deglycobleomycin. A series of methylvalerate analogues have been synthesized and incorporated into deglycobleomycin congeners by the use of solid-phase synthesis. All of the deglycobleomycin analogues were found to effect the relaxation of plasmid DNA. Those analogues having aromatic C4-substituents exhibited cleavage efficiency comparable to that of deglycoBLM A5. Some, but not all, of the deglycoBLM analogues were also capable of mediating sequence-selective DNA cleavage. The second project focused on the synthesis of bicyclic pyridinol analogues of alpha-tocopherol. Bicyclic pyridinol antioxidants have recently been reported to suppress the autoxidation of methyl linoleate more effectively than alpha-tocopherol. However, the complexity of the synthetic routes has hampered their further development as therapeutic agents. Described herein is a concise synthesis of two bicyclic pridinol antioxidants and a facile approach to their derivatives with simple alkyl chains attached to the antioxidant core. These analogues were shown to retain biological activity and exhibit tocopherol-like behaviour.
ContributorsCai, Xiaoqing (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian R (Committee member) / Hartnett, Hilairy E (Committee member) / Arizona State University (Publisher)
Created2011
151082-Thumbnail Image.png
Description
This dissertation examines two topics of emerging interest in the field of organic geochemistry. The topic of the first portion of the dissertation is cold organic geochemistry on Saturn's moon Titan. Titan has an atmosphere and surface that are rich in organic compounds. Liquid hydrocarbons exist on the surface, most

This dissertation examines two topics of emerging interest in the field of organic geochemistry. The topic of the first portion of the dissertation is cold organic geochemistry on Saturn's moon Titan. Titan has an atmosphere and surface that are rich in organic compounds. Liquid hydrocarbons exist on the surface, most famously as lakes. Photochemical reactions produce solid organics in Titan's atmosphere, and these materials settle onto the surface. At the surface, liquids can interact with solids, and geochemical processes can occur. To better understand these processes, I developed a thermodynamic model that can be used to calculate the solubilities of gases and solids in liquid hydrocarbons at cryogenic temperatures. The model was parameterized using experimental data, and provides a good fit to the data. Application of the model to Titan reveals that the equilibrium composition of surface liquids depends on the abundance of methane in the local atmosphere. The model also indicates that solid acetylene should be quite soluble in surface liquids, which implies that acetylene-rich rocks should be susceptible to chemical erosion, and acetylene evaporites may form on Titan. In the latter half of this dissertation, I focus on hot organic geochemistry below the surface of the Earth. Organic compounds are common in sediments. Burial of sediments leads to changes in physical and chemical conditions, promoting organic reactions. An important organic reaction in subsurface environments is decarboxylation, which generates hydrocarbons and carbon dioxide from simple organic acids. Fundamental knowledge about decarboxylation is required to better understand how the organic and inorganic compositions of sediments evolve in response to changing geochemical conditions. I performed experiments with the model compound phenylacetic acid to obtain information about mechanisms of decarboxylation in hydrothermal fluids. Patterns in rates of decarboxylation of substituted phenylacetic acids point to a mechanism that proceeds through a ring-protonated zwitterion of phenylacetic acid. In contrast, substituted sodium phenylacetates exhibit a different kinetic pattern, one that is consistent with the formation of the benzyl anion as an intermediate. Results from experiments with added hydrochloric acid or sodium hydroxide, and deuterated water agree with these interpretations. Thus, speciation dictates mechanism of decarboxylation.
ContributorsGlein, Christopher R (Author) / Shock, Everett L (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Zolotov, Mikhail Y (Committee member) / Williams, Lynda B (Committee member) / Gould, Ian R (Committee member) / Arizona State University (Publisher)
Created2012
154122-Thumbnail Image.png
Description
Waste heat energy conversion remains an inviting subject for research, given the renewed emphasis on energy efficiency and carbon emissions reduction. Solid-state thermoelectric devices have been widely investigated, but their practical application remains challenging because of cost and the inability to fabricate them in geometries that are easily compatible

Waste heat energy conversion remains an inviting subject for research, given the renewed emphasis on energy efficiency and carbon emissions reduction. Solid-state thermoelectric devices have been widely investigated, but their practical application remains challenging because of cost and the inability to fabricate them in geometries that are easily compatible with heat sources. An intriguing alternative to solid-state thermoelectric devices is thermogalvanic cells, which include a generally liquid electrolyte that permits the transport of ions. Thermogalvanic cells have long been known in the electrochemistry community, but have not received much attention from the thermal transport community. This is surprising given that their performance is highly dependent on controlling both thermal and mass (ionic) transport. This research will focus on a research project, which is an interdisciplinary collaboration between mechanical engineering (i.e. thermal transport) and chemistry, and is a largely experimental effort aimed at improving fundamental understanding of thermogalvanic systems. The first part will discuss how a simple utilization of natural convection within the cell doubles the maximum power output of the cell. In the second part of the research, some of the results from the previous part will be applied in a feasibility study of incorporating thermogalvanic waste heat recovery systems into automobiles. Finally, a new approach to enhance Seebeck coefficient by tuning the configurational entropy of a mixed-ligand complex formation of copper sulfate aqueous electrolytes will be presented. Ultimately, a summary of these results as well as possible future work that can be formed from these efforts is discussed.
ContributorsGunawan, Andrey (Author) / Phelan, Patrick E (Thesis advisor) / Buttry, Daniel A (Committee member) / Mujica, Vladimiro (Committee member) / Chan, Candace K. (Committee member) / Wang, Robert Y (Committee member) / Arizona State University (Publisher)
Created2015
155985-Thumbnail Image.png
Description
Microfluidics has shown great potential in rapid isolation, sorting, and concentration of bioparticles upon its discovery. Over the past decades, significant improvements have been made in device fabrication techniques and microfluidic methodologies. As a result, considerable microfluidic-based isolation and concentration techniques have been developed, particularly for rapid pathogen detection. Among

Microfluidics has shown great potential in rapid isolation, sorting, and concentration of bioparticles upon its discovery. Over the past decades, significant improvements have been made in device fabrication techniques and microfluidic methodologies. As a result, considerable microfluidic-based isolation and concentration techniques have been developed, particularly for rapid pathogen detection. Among all microfluidic techniques, dielectrophoresis (DEP) is one of the most effective and efficient techniques to quickly isolate and separate polarizable particles under inhomogeneous electric field. To date, extensive studies have demonstrated that DEP devices are able to precisely manipulate cells ranging from over 10 μm (mammalian cells) down to about 1 μm (small bacteria). However, very limited DEP studies on manipulating submicron bioparticles, such as viruses, have been reported.

In this dissertation, rapid capture and concentration of two different and representative types of virus particles (Sindbis virus and bacteriophage M13) with gradient insulator-based DEP (g-iDEP) has been demonstrated. Sindbis virus has a near-spherical shape with a diameter ~68 nm, while bacteriophage M13 has a filamentous shape with a length ~900 nm and a diameter ~6 nm. Under specific g-iDEP experimental conditions, the concentration of Sindbis virus can be increased two to six times within only a few seconds, using easily accessible voltages as low as 70 V. A similar phenomenon is also observed with bacteriophage M13. Meanwhile, their different DEP behavior predicts the potential of separating viruses with carefully designed microchannels and choices of experimental condition.

DEP-based microfluidics also shows great potential in manipulating blood samples, specifically rapid separations of blood cells and proteins. To investigate the ability of g-iDEP device in blood sample manipulation, some proofs of principle work was accomplished including separating two cardiac disease-related proteins (myoglobin and heart-type fatty acid binding protein) and red blood cells (RBCs). Consistent separation was observed, showing retention of RBCs and passage of the two spiked protein biomarkers. The numerical concentration of RBCs was reduced (~70 percent after one minute) with the purified proteins available for detection or further processing. This study explores and extends the use of the device from differentiating similar particles to acting as a sample pretreatment step.
ContributorsDing, Jie (Author) / Hayes, Mark A. (Thesis advisor) / Ros, Alexandra (Committee member) / Buttry, Daniel A (Committee member) / Arizona State University (Publisher)
Created2017
156308-Thumbnail Image.png
Description
Organic reactions in natural hydrothermal settings have relevance toward the deep carbon cycle, petroleum formation, the ecology of deep microbial communities, and potentially the origin of life. Many reaction pathways involving organic compounds under geochemically relevant hydrothermal conditions have now been characterized, but their mechanisms, in particular those involving

Organic reactions in natural hydrothermal settings have relevance toward the deep carbon cycle, petroleum formation, the ecology of deep microbial communities, and potentially the origin of life. Many reaction pathways involving organic compounds under geochemically relevant hydrothermal conditions have now been characterized, but their mechanisms, in particular those involving mineral surface catalysis, are largely unknown. The overall goal of this work is to describe these mechanisms so that predictive models of reactivity can be developed and so that applications of these reactions beyond geochemistry can be explored. The focus of this dissertation is the mechanisms of hydrothermal dehydration and catalytic hydrogenation reactions. Kinetic and structure/activity relationships show that elimination occurs mainly by the E1 mechanism for simple alcohols via homogeneous catalysis. Stereochemical probes show that hydrogenation on nickel occurs on the metal surface. By combining dehydration with and catalytic reduction, effective deoxygenation of organic structures with various functional groups such as alkenes, polyols, ketones, and carboxylic acids can be accomplished under hydrothermal conditions, using either nickel or copper-zinc alloy. These geomimetic reactions can potentially be used in biomass reduction to generate useful fuels and other high value chemicals. Through the use of earth-abundant metal catalysts, and water as the solvent, the reactions presented in this dissertation are a green alternative to current biomass deoxygenation/reduction methods, which often use exotic, rare-metal catalysts, and organic solvents.
ContributorsBockisch, Christiana (Author) / Gould, Ian R (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Shock, Everett L (Committee member) / Arizona State University (Publisher)
Created2018