Matching Items (3)

132547-Thumbnail Image.png

Automated Bicycle Human-in-the-Loop Control

Description

Bicycles are already used for daily transportation by a large share of the world's population and provide a partial solution for many issues facing the world today. The low environmental

Bicycles are already used for daily transportation by a large share of the world's population and provide a partial solution for many issues facing the world today. The low environmental impact of bicycling combined with the reduced requirement for road and parking spaces makes bicycles a good choice for transportation over short distances in urban areas. Bicycle riding has also been shown to improve overall health and increase life expectancy. However, riding a bicycle may be inconvenient or impossible for persons with disabilities due to the complex and coordinated nature of the task. Automated bicycles provide an interesting area of study for human-robot interaction, due to the number of contact points between the rider and the bicycle. The goal of the Smart Bike project is to provide a platform for future study of the physical interaction between a semi-autonomous bicycle robot and a human rider, with possible applications in rehabilitation and autonomous vehicle research.

This thesis presents the development of two balance control systems, which utilize actively controlled steering and a control moment gyroscope to stabilize the bicycle at high and low speeds. These systems may also be used to introduce disturbances, which can be useful for studying human reactions. The effectiveness of the steering balance control system is verified through testing with a PID controller in an outdoor environment. Also presented is the development of a force sensitive bicycle seat which provides feedback used to estimate the pose of the rider on the bicycle. The relationship between seat force distribution is demonstrated with a motion capture experiment. A corresponding software system is developed for balance control and sensor integration, with inputs from the rider, the internal balance and steering controller, and a remote operator.

Contributors

Agent

Created

Date Created
  • 2019-05

Using an automated attendance monitoring system to maximize time for class activities

Description

Class instructors at Arizona State University monitor students’ attendance for classes in which attendance is either mandatory or encouraged. Class monitoring can be done using traditional systems such as sign

Class instructors at Arizona State University monitor students’ attendance for classes in which attendance is either mandatory or encouraged. Class monitoring can be done using traditional systems such as sign sheets and roll calls. From my initial observations while attending a class which utilized a sign sheet for class attendance monitoring, I thought the process took long and was inefficient. As a result, I created an automated system that would replace the traditional systems and improve the class monitoring process. Thus, this study aims to determine whether the automated system reduced the time it takes to monitor class attendance, and whether it was efficient.

To examine the above question, the automated system was deployed to 2 classes at Arizona State University. Additionally, surveys were distributed to 2 instructors and 33 students and they were asked to respond to questions relating to class attendance and the monitoring systems which were being used alternatively with the newly-created automated system. Analysis of the responses demonstrated that use of an automated system reduced the time it takes students to mark their presence, and thus increase the time used for other class activities. The results also indicate that the design of the automated system affects the overall time it takes to monitor attendance. On this basis, it is recommended that instructors utilize an automated system to monitor class attendance. Further research is needed to study the time it takes instructors to set up different monitoring systems in order to ascertain that an automated system reduces the overall time it takes to monitor attendance compared to other traditionally used systems.

Contributors

Agent

Created

Date Created
  • 2019-05

158465-Thumbnail Image.png

Physical Human-Bicycle Interfaces for Robotic Balance Assistance

Description

Riding a bicycle requires accurately performing several tasks, such as balancing and navigation, which may be difficult or even impossible for persons with disabilities. These difficulties may be partly alleviated

Riding a bicycle requires accurately performing several tasks, such as balancing and navigation, which may be difficult or even impossible for persons with disabilities. These difficulties may be partly alleviated by providing active balance and steering assistance to the rider. In order to provide this assistance while maintaining free maneuverability, it is necessary to measure the position of the rider on the bicycle and to understand the rider's intent. Applying autonomy to bicycles also has the potential to address some of the challenges posed by traditional automobiles, including CO2 emissions, land use for roads and parking, pedestrian safety, high ownership cost, and difficulty traversing narrow or partially obstructed paths.

The Smart Bike research platform provides a set of sensors and actuators designed to aid in understanding human-bicycle interaction and to provide active balance control to the bicycle. The platform consists of two specially outfitted bicycles, one with force and inertial measurement sensors and the other with robotic steering and a control moment gyroscope, along with the associated software for collecting useful data and running controlled experiments. Each bicycle operates as a self-contained embedded system, which can be used for untethered field testing or can be linked to a remote user interface for real-time monitoring and configuration. Testing with both systems reveals promising capability for applications in human-bicycle interaction and robotics research.

Contributors

Agent

Created

Date Created
  • 2020