Matching Items (5)
150543-Thumbnail Image.png
Description
The Kinsley Mountain gold deposit of northeastern Nevada, located ~70 km south of Wendover, Nevada, contains seven sediment-hosted, disseminated-gold deposits, in Cambrian limestones and shales. Mining ceased in 1999, with 138,000 ounces of gold mined at an average grade between 1.5-2.0 g/t. Resource estimates vary between 15,000 and 150,000 ounces

The Kinsley Mountain gold deposit of northeastern Nevada, located ~70 km south of Wendover, Nevada, contains seven sediment-hosted, disseminated-gold deposits, in Cambrian limestones and shales. Mining ceased in 1999, with 138,000 ounces of gold mined at an average grade between 1.5-2.0 g/t. Resource estimates vary between 15,000 and 150,000 ounces of gold remaining in several mineralized pods. Although exploration programs have been completed within the study area, the structural history and timing of precious-metal mineralization are still poorly understood. This study aims to better understand the relation between stratigraphy, structural setting, and style of gold mineralization. In order to accomplish these goals, geological mapping at a scale of 1:5,000 was conducted over the property as well as analysis of soil and rock chip samples for multi-element geochemistry. Using cross-cutting relationships, the structural history of Kinsley Mountain has been determined. The deformation can broadly be categorized as an early stage of compressional tectonics including folding, attenuation of the stratigraphy, and thrust faulting. This early stage was followed by a series of extensional deformation events, the youngest of which is an ongoing process. The structural history determined from this study fits well into a regional context and when viewed in conjunction with the mineralization event, can be used to bracket the timing of gold mineralization. The northwest oriented structure responsible for concentrating decalcification, silicification, and mineralization has two generations of cave fill breccias that both pre- and post-date the gold event. The statistical analysis of multi-element geochemistry for rock chip and soil samples has determined that Au is most strongly associated with Te, while weaker correlations exist between Au and Ag, As, Hg, Mo, Sb, Tl, and W. This suite of elements is associated with an intrusion driven system and is atypical of Carlin-type gold systems. From these elemental associations the gold mineralization event is thought to be controlled by the emplacement of a felsic intrusion. The responsible intrusion may be an exposed quartz monzonite to the south of the study area, as suggested by possible zonation of Cu, Pb, and Zn, which decrease in concentration with increasing distance from the outcropping stock. Alternatively, an unexposed intrusion at depth cannot be ruled out as the driver of the mineralizing system.
ContributorsMacFarlane, Bryan (Author) / Reynolds, Stephen (Thesis advisor) / Hervig, Richard (Committee member) / Burt, Donald (Committee member) / Arizona State University (Publisher)
Created2012
149827-Thumbnail Image.png
Description
The Santa Gertrudis Mining District of Sonora, Mexico contains more than a dozen purported Carlin-like, sedimentary-hosted, disseminated-gold deposits. A series of near-surface, mostly oxidized gold deposits were open-pit mined from the calcareous and clastic units of the Cretaceous Bisbee Group. Gold occurs as finely disseminated, sub-micron

The Santa Gertrudis Mining District of Sonora, Mexico contains more than a dozen purported Carlin-like, sedimentary-hosted, disseminated-gold deposits. A series of near-surface, mostly oxidized gold deposits were open-pit mined from the calcareous and clastic units of the Cretaceous Bisbee Group. Gold occurs as finely disseminated, sub-micron coatings on sulfides, associated with argillization and silicification of calcareous, carbonaceous, and siliciclastic sedimentary rocks in structural settings. Gold occurs with elevated levels of As, Hg, Sb, Pb, and Zn. Downhole drill data within distal disseminated gold zones reveal a 5:1 ratio of Ag:Au and strong correlations of Au to Pb and Zn. This study explores the timing and structural control of mineralization utilizing field mapping, geochemical studies, drilling, core logging, and structural analysis. Most field evidence indicates that mineralization is related to a single pulse of moderately differentiated, Eocene intrusives described as Mo-Cu-Au skarn with structurally controlled distal disseminated As-Ag-Au.
ContributorsGeier, John Jeffrey (Author) / Reynolds, Stephen J. (Thesis advisor) / Burt, Donald (Committee member) / Stump, Edmund (Committee member) / Arizona State University (Publisher)
Created2011
153742-Thumbnail Image.png
Description
ABSTRACT

The Sentinel-Arlington Volcanic Field (SAVF) is the Sentinel Plains lava field and associated volcanic edifices of late Cenozoic alkali olivine basaltic lava flows and minor tephra deposits near the Gila Bend and Painted Rock Mountains, 65 km-100km southwest of Phoenix, Arizona. The SAVF covers ~600 km2 and consists of

ABSTRACT

The Sentinel-Arlington Volcanic Field (SAVF) is the Sentinel Plains lava field and associated volcanic edifices of late Cenozoic alkali olivine basaltic lava flows and minor tephra deposits near the Gila Bend and Painted Rock Mountains, 65 km-100km southwest of Phoenix, Arizona. The SAVF covers ~600 km2 and consists of 21+ volcanic centers, primarily low shield volcanoes ranging from 4-6 km in diameter and 30-200 m in height. The SAVF represents plains-style volcanism, an emplacement style and effusion rate intermediate between flood volcanism and large shield-building volcanism. Because of these characteristics, SAVF is a good analogue to small-volume effusive volcanic centers on Mars, such as those seen the southern flank of Pavonis Mons and in the Tempe Terra region of Mars. The eruptive history of the volcanic field is established through detailed geologic map supplemented by geochemical, paleomagnetic, and geochronological analysis.

Paleomagnetic analyses were completed on 473 oriented core samples from 58 sites. Mean inclination and declination directions were calculated from 8-12 samples at each site. Fifty sites revealed well-grouped natural remanent magnetization vectors after applying alternating field demagnetization. Thirty-nine sites had reversed polarity, eleven had normal polarity. Fifteen unique paleosecular variation inclination and declination directions were identified, six were represented by more than one site with resultant vectors that correlated within a 95% confidence interval. Four reversed sites were radiometrically dated to the Matuyama Chron with ages ranging from 1.08 ± 0.15 Ma to 2.37 ± 0.02 Ma; and one normal polarity site was dated to the Olduvai normal excursion at 1.91 ± 0.59 Ma. Paleomagnetic correlations within a 95% confidence interval were used to extrapolate radiogenic dates. Results reveal 3-5 eruptive stages over ~1.5 Ma in the early Pleistocene and that the SAVF dammed and possibly diverted the lower Gila River multiple times. Preliminary modeling of the median clast size of the terrace deposits suggests a maximum discharge of ~11300 cms (~400,000 cfs) was necessary to transport observed sediment load, which is larger than the historically recorded discharge of the modern Gila River.
ContributorsCave, Shelby Renee (Author) / Clarke, Amanda (Thesis advisor) / Burt, Donald (Committee member) / Reynolds, Stephen (Committee member) / Semken, Steven (Committee member) / Schmeeckle, Mark (Committee member) / Arizona State University (Publisher)
Created2015
153869-Thumbnail Image.png
Description
The historic Cacachilas mining district is located in Baja California Sur, approximately 20 kilometers east of La Paz, and has a series of gold- and silver-hosted veins, faults, and shear zones within Cretaceous granodioritic plutons. The remote geographic location and past political events within Mexico left the district essentially unexplored

The historic Cacachilas mining district is located in Baja California Sur, approximately 20 kilometers east of La Paz, and has a series of gold- and silver-hosted veins, faults, and shear zones within Cretaceous granodioritic plutons. The remote geographic location and past political events within Mexico left the district essentially unexplored after the late 1800s, when the Mexican Revolution began. More recent discovery of gold deposits along the Baja peninsula instigated a renewed interest in mineralization in the Sierra Cacachilas. The area lacks detailed previous geologic data, so this study focused on characterizing the controls of mineralization and the locations of mineralized trends of deposits within the northeastern Sierra Cacachilas, with a goal toward helping assess economic viability of the deposits. I mapped surficial geologic data, such as outcrop locations, alteration assemblages, limonite intensities, and structural measurements. I then synthesized these into geologic maps and cross sections. I combined field data with geochemical assays and structural plots to better characterize individual historic district trends and newly located trends to understand the distribution of mineralization at surface and at depth. Lastly, I synthesized geology of the Sierra Cacachilas with other gold and silver deposits located in the southern Baja peninsula to better characterize the mineralization and deposit style of the Cacachilas district.

Mineralization in the northeastern Sierra Cacachilas is mainly restricted to steeply dipping quartz veins, faults, and brittle-ductile shear zones that trend generally northeast. Some veins are en-echelon within the mineralized zones, implying some lateral movement along the zones. Veins are dominated by milky to clear quartz with trace sulfides, abundant limonite (after sulfides), and local open-space textures. Mineralization is interpreted to be intermediate between classic epithermal and mesothermal veins. Within mineralized trends and commonly associated with mineralization are greisen-like zones that are defined by intense sericitic to muscovitic overprint, trend northeast, and are with or without sulfides. The intensity of sulfide abundance and limonitic alteration after sulfides within and near mineralized zones is overall a good guide to mineralization. Based on past reports and on my recent studies, the Cacachilas district has very promising potential for relatively small, high-grade deposits.
ContributorsSeverson, Allison Rose (Author) / Reynolds, Stephen J. (Thesis advisor) / Semken, Steven (Committee member) / Burt, Donald (Committee member) / Arizona State University (Publisher)
Created2015
Description
The purpose of this creative project is twofold: Firstly, to study various pattern-welding processes that have been used throughout history, and secondly, to attempt to create a piece or several pieces of art using the processes studied. Pattern-welding traditionally refers to the practice of creating forged laminates composed of alternating

The purpose of this creative project is twofold: Firstly, to study various pattern-welding processes that have been used throughout history, and secondly, to attempt to create a piece or several pieces of art using the processes studied. Pattern-welding traditionally refers to the practice of creating forged laminates composed of alternating layers of two or more compositionally distinct metals. This term is typically used to specifically refer to these techniques when they are used for the creation of blades, with laminates made of high-phosphorus iron, low-phosphorus mild steel, and/or wrought iron, which was historically done to give the final weapon allegedly better mechanical properties (Thiele et al., 2015). This technique, while supposedly creating mechanically superior weapons in terms of durability and strength, also results in a unique, incredibly aesthetic visual effect. As the laminated billet of metals is twisted, deformed, etched, and polished, the different layers of metals become visible, resulting in a range of patterns depending on the deformation techniques used, and it was this aesthetic value that truly led to the widespread use of pattern-welding. Metals worked in this manner are colloquially known today as Damascus, although the process is technically distinct from true Damascus steel. For the purposes of this creative project, I will extend the concept of pattern-welding beyond strictly using iron and steel used to create swords, and include the similar artistic technique known as mokume-gane. Mokume-gane, which directly translates into English as “wood-grain metal” (Binnion, 2011), also involves forging alternating layers of different metals into a billet, but uses softer metals, historically silver, gold, copper, and alloys of the above. Mokume-gane, which has only relatively recently been used in the West, is the technique that I used to create my art pieces for this creative project.
ContributorsFox, Matthew Davis (Author) / Misquadace, Wanesia (Thesis director) / Burt, Donald (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05