Matching Items (34)
152047-Thumbnail Image.png
Description
Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students

Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students in understanding the discipline. The first of these three modes of representation is the symbolic mode, which uses a standard set of rules for chemical nomenclature set out by the IUPAC. The second mode of representation is that of microscopic, which depicts chemical compounds as discrete units made up of atoms and molecules, with a particular ratio of atoms to a molecule or formula unit. The third mode of representation is macroscopic, what can be seen, experienced, or measured directly, like ice melting or a color change during a chemical reaction. Recent evidence suggests that chemistry instructors can assist their students in making the connections between the modes of representation by incorporating all three modes into their teaching and discussions, and overtly connecting the modes during instruction. In this research, chemistry teachers at the community college level were observed over the course of an entire semester, to evaluate their instructional use of mode of representation. The students of these teachers were tested prior to and after a semester's worth of instruction, and changes in the basic chemistry conceptual knowledge of these students were compared. Additionally, a subset of the overall population that was pre- and post-tested was interviewed at length using demonstrations of chemical phenomenon that students were asked to translate using all three modes of representation. Analysis of the instruction of three community college teachers shows there were significant differences among these teachers in their instructional use of mode of representation. Additionally, the students of these three teachers had differential and statistically significant achievement over the course of the semester. This research supports results of other similar studies, as well as providing some unexpected results from the students involved.
ContributorsWood, Lorelei (Author) / Baker, Dale (Thesis advisor) / Ganesh, Tirupalavanam G. (Committee member) / Colleen, Megowan (Committee member) / Sujatha, Krishnaswamy (Committee member) / Arizona State University (Publisher)
Created2013
151793-Thumbnail Image.png
Description
Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to create high level motion plans to control robots in the field by converting a visual representation of the motion/task plan into a Linear Temporal Logic (LTL) specification. The visual interface is built on the Android tablet platform and provides functionality to create task plans through a set of well defined gestures and on screen controls. It uses the notion of waypoints to quickly and efficiently describe the motion plan and enables a variety of complex Linear Temporal Logic specifications to be described succinctly and intuitively by the user without the need for the knowledge and understanding of LTL specification. Thus, it opens avenues for its use by personnel in military, warehouse management, and search and rescue missions. This thesis describes the construction of LTL for various scenarios used for robot navigation using the visual interface developed and leverages the use of existing LTL based motion planners to carry out the task plan by a robot.
ContributorsSrinivas, Shashank (Author) / Fainekos, Georgios (Thesis advisor) / Baral, Chitta (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2013
152844-Thumbnail Image.png
Description
For this master's thesis, a unique set of cognitive prompts, designed to be delivered through a teachable robotic agent, were developed for students using Tangible Activities for Geometry (TAG), a tangible learning environment developed at Arizona State University. The purpose of these prompts is to enhance the affordances of the

For this master's thesis, a unique set of cognitive prompts, designed to be delivered through a teachable robotic agent, were developed for students using Tangible Activities for Geometry (TAG), a tangible learning environment developed at Arizona State University. The purpose of these prompts is to enhance the affordances of the tangible learning environment and help researchers to better understand how we can design tangible learning environments to best support student learning. Specifically, the prompts explicitly encourage users to make use of their physical environment by asking students to perform a number of gestures and behaviors while prompting students about domain-specific knowledge. To test the effectiveness of these prompts that combine elements of cognition and physical movements, the performance and behavior of students who encounter these prompts while using TAG will be compared against the performance and behavior of students who encounter a more traditional set of cognitive prompts that would typically be used within a virtual learning environment. Following this study, data was analyzed using a novel modeling and analysis tool that combines enhanced log annotation using video and user model generation functionalities to highlight trends amongst students.
ContributorsThomas, Elissa (Author) / Burleson, Winslow (Thesis advisor) / Muldner, Katarzyna (Committee member) / Walker, Erin (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2014
152616-Thumbnail Image.png
Description
Working with participants in schools for highly gifted students, this study asked adolescents to create a digital story to address the prompt, "How has your life changed since coming to this school?" Participant interviews were conducted in an attempt to determine how gifted students view their educational experiences and how

Working with participants in schools for highly gifted students, this study asked adolescents to create a digital story to address the prompt, "How has your life changed since coming to this school?" Participant interviews were conducted in an attempt to determine how gifted students view their educational experiences and how those experiences influence the current development of self-identity. Digital story creation and photo elicitation methods were chosen in an effort to remove researcher bias and allow participant voices to be heard more accurately. Parent and educator interviews were also conducted. Data analysis was completed using narrative construction methods. Findings include several themes among participant self-identity influences including how labels affect participant's view of themselves, perfectionism and competitive drive function in each gifted child, necessity of intellectual challenge, appropriate learning environment helps to create self-confidence and self-identity, and grades are more important than learning for knowledge.
ContributorsHart, Courtney Brook (Author) / Ganesh, Tirupalavanam G. (Thesis advisor) / Margolis, Eric (Thesis advisor) / Sandlin, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
153127-Thumbnail Image.png
Description
Many web search improvements have been developed since the advent of the modern search engine, but one underrepresented area is the application of specific customizations to search results for educational web sites. In order to address this issue and improve the relevance of search results in automated learning environments, this

Many web search improvements have been developed since the advent of the modern search engine, but one underrepresented area is the application of specific customizations to search results for educational web sites. In order to address this issue and improve the relevance of search results in automated learning environments, this work has integrated context-aware search principles with applications of preference based re-ranking and query modifications. This research investigates several aspects of context-aware search principles, specifically context-sensitive and preference based re-ranking of results which take user inputs as to their preferred content, and combines this with search query modifications which automatically search for a variety of modified terms based on the given search query, integrating these results into the overall re-ranking for the context. The result of this work is a novel web search algorithm which could be applied to any online learning environment attempting to collect relevant resources for learning about a given topic. The algorithm has been evaluated through user studies comparing traditional search results to the context-aware results returned through the algorithm for a given topic. These studies explore how this integration of methods could provide improved relevance in the search results returned when compared against other modern search engines.
ContributorsVan Egmond, Eric (Author) / Burleson, Winslow (Thesis advisor) / Syrotiuk, Violet (Thesis advisor) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2014
153056-Thumbnail Image.png
Description
With the rise of mobile technology, the personal lives and sensitive information of everyday citizens are carried about without a thought to the risks involved. Despite this high possibility of harm, many fail to use simple security to protect themselves because they feel the benefits of securing their devices do

With the rise of mobile technology, the personal lives and sensitive information of everyday citizens are carried about without a thought to the risks involved. Despite this high possibility of harm, many fail to use simple security to protect themselves because they feel the benefits of securing their devices do not outweigh the cost to usability. The main issue is that beyond initial authentication, sessions are maintained using optional timeout mechanisms where a session will end if a user is inactive for a period of time. This interruption-based form of continuous authentication requires constant user intervention leading to frustration, which discourages its use. No solution currently exists that provides an implementation beyond the insecure and low usability of simple timeout and re-authentication. This work identifies the flaws of current mobile authentication techniques and provides a new solution that is not limiting to the user, has a system for secure, active continuous authentication, and increases the usability and security over current methods.
ContributorsRomo, James Tyler (Author) / Ahn, Gail-Joon (Thesis advisor) / Dasgupta, Partha (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2014
150293-Thumbnail Image.png
Description
Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of

Strong communities are important for society. One of the most important community builders, making friends, is poorly supported online. Dating sites support it but in romantic contexts. Other major social networks seem not to encourage it because either their purpose isn't compatible with introducing strangers or the prevalent methods of introduction aren't effective enough to merit use over real word alternatives. This paper presents a novel digital social network emphasizing creating friendships. Research has shown video chat communication can reach in-person levels of trust; coupled with a game environment to ease the discomfort people often have interacting with strangers and a recommendation engine, Zazzer, the presented system, allows people to meet and get to know each other in a manner much more true to real life than traditional methods. Its network also allows players to continue to communicate afterwards. The evaluation looks at real world use, measuring the frequency with which players choose the video chat game versus alternative, more traditional methods of online introduction. It also looks at interactions after the initial meeting to discover how effective video chat games are in creating sticky social connections. After initial use it became apparent a critical mass of users would be necessary to draw strong conclusions, however the collected data seemed to give preliminary support to the idea that video chat games are more effective than traditional ways of meeting online in creating new relationships.
ContributorsSorensen, Asael (Author) / VanLehn, Kurt (Thesis advisor) / Liu, Huan (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
150388-Thumbnail Image.png
Description
The main objective of this project was to create a framework for holistic ideation and research about the technical issues involved in creating a holistic approach. Towards that goal, we explored different components of ideation (both logical and intuitive), characterized ideation states, and found new ideation blocks with strategies used

The main objective of this project was to create a framework for holistic ideation and research about the technical issues involved in creating a holistic approach. Towards that goal, we explored different components of ideation (both logical and intuitive), characterized ideation states, and found new ideation blocks with strategies used to overcome them. One of the major contributions of this research is the method by which easy traversal between different ideation methods with different components were facilitated, to support both creativity and functional quality. Another important part of the framework is the sensing of ideation states (blocks/ unfettered ideation) and investigation of matching ideation strategies most likely to facilitate progress. Some of the ideation methods embedded in the initial holistic test bed are Physical effects catalog, working principles catalog, TRIZ, Bio-TRIZ and Artifacts catalog. Repositories were created for each of those. This framework will also be used as a research tool to collect large amount of data from designers about their choice of ideation strategies used, and their effectiveness. Effective documentation of design ideation paths is also facilitated using this holistic approach. A computer tool facilitating holistic ideation was developed. Case studies were run on different designers to document their ideation states and their choice of ideation strategies to come up with a good solution to solve the same design problem.
ContributorsMohan, Manikandan (Author) / Shah, Jami J. (Thesis advisor) / Huebner, Kenneth (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2011
149950-Thumbnail Image.png
Description
With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in

With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in teamwork, and team members' movement and face-to-face interaction strength in the wild. Using sociometric badges (wearable sensors), electronic Experience Sampling Methods (ESM), the KEYS team creativity assessment instrument, and qualitative methods, three research studies were conducted in academic and industry R&D; labs. Sociometric badges captured movement of team members and face-to-face interaction between team members. KEYS scale was implemented using ESM for self-rated creativity and expert-coded creativity assessment. Activities (movement and face-to-face interaction) and creativity of one five member and two seven member teams were tracked for twenty five days, eleven days, and fifteen days respectively. Day wise values of movement and face-to-face interaction for participants were mean split categorized as creative and non-creative using self- rated creativity measure and expert-coded creativity measure. Paired-samples t-tests [t(36) = 3.132, p < 0.005; t(23) = 6.49 , p < 0.001] confirmed that average daily movement energy during creative days (M = 1.31, SD = 0.04; M = 1.37, SD = 0.07) was significantly greater than the average daily movement of non-creative days (M = 1.29, SD = 0.03; M = 1.24, SD = 0.09). The eta squared statistic (0.21; 0.36) indicated a large effect size. A paired-samples t-test also confirmed that face-to-face interaction tie strength of team members during creative days (M = 2.69, SD = 4.01) is significantly greater [t(41) = 2.36, p < 0.01] than the average face-to-face interaction tie strength of team members for non-creative days (M = 0.9, SD = 2.1). The eta squared statistic (0.11) indicated a large effect size. The combined approach of principal component analysis (PCA) and linear discriminant analysis (LDA) conducted on movement and face-to-face interaction data predicted creativity with 87.5% and 91% accuracy respectively. This work advances creativity research and provides a foundation for sensor based real-time creativity support tools for teams.
ContributorsTripathi, Priyamvada (Author) / Burleson, Winslow (Thesis advisor) / Liu, Huan (Committee member) / VanLehn, Kurt (Committee member) / Pentland, Alex (Committee member) / Arizona State University (Publisher)
Created2011
150780-Thumbnail Image.png
Description
Collaborative learning is a common teaching strategy in classrooms across age groups and content areas. It is important to measure and understand the cognitive process involved during collaboration to improve teaching methods involving interactive activities. This research attempted to answer the question: why do students learn more in collaborative settings?

Collaborative learning is a common teaching strategy in classrooms across age groups and content areas. It is important to measure and understand the cognitive process involved during collaboration to improve teaching methods involving interactive activities. This research attempted to answer the question: why do students learn more in collaborative settings? Using three measurement tools, 142 participants from seven different biology courses at a community college and at a university were tested before and after collaborating about the biological process of natural selection. Three factors were analyzed to measure their effect on learning at the individual level and the group level. The three factors were: difference in prior knowledge, sex and religious beliefs. Gender and religious beliefs both had a significant effect on post-test scores.
ContributorsTouchman, Stephanie (Author) / Baker, Dale (Thesis advisor) / Rosenberg, Michael (Committee member) / Ganesh, Tirupalavanam G. (Committee member) / Arizona State University (Publisher)
Created2012