Matching Items (43)

Filtering by

Clear all filters

133425-Thumbnail Image.png

Viability of Cryotherapy Device for Spastic Relief Compared to Current Electrotherapy Device

Description

Spasticity is a neurological disorder in which a target group of muscles remain in a contracted state. In addition to interfering with the function of these muscles, spasticity causes chronic pain and discomfort. Often found in patients with cerebral palsy,

Spasticity is a neurological disorder in which a target group of muscles remain in a contracted state. In addition to interfering with the function of these muscles, spasticity causes chronic pain and discomfort. Often found in patients with cerebral palsy, multiple sclerosis, or stroke history, spasticity affects an estimated twelve million people worldwide. Not only does spasticity cause discomfort and loss of function, but the condition can lead to contractures, or permanent shortenings of the muscle and connective tissue, if left untreated. Current treatments for spasticity are primarily different forms of muscle relaxant pharmaceuticals. Almost all of these drugs, however, carry unwanted side effects, including total muscle weakness, liver toxicity, and possible dependence. Additionally, kinesiotherapy, conducted by physical therapists at rehabilitation clinics, is often prescribed to people suffering from spasticity. Since kinesiotherapy requires frequent practice to be effective, proper treatment requires constant professional care and clinic appointments, discouraging patient compliance. Consequently, a medical device that could automate relief for spasticity outside of a clinic is desired in the market. While a number of different dynamic splints for hand spasticity are currently on the market, research has shown that these devices, which simply brace the hand in an extended position, do not work through any mechanism to decrease spastic tension over time. Two methods of temporarily reducing spasticity that have been observed in clinical studies are cryotherapy, or the decrease of temperature on a target area, and electrotherapy, which is the delivery of regulated electrical pulses to a target area. It is possible that either of these mechanisms could be incorporated into a medical device aimed toward spastic relief. In fact, electrotherapy is used in a current market device called the SaeboStim, which is advertised to help stroke recovery and spastic reduction. The purpose of this paper is to evaluate the viability of a potential spastic relief device that utilizes cryotherapy to a current and closest competitor, the SaeboStim. The effectiveness of each device in relieving spasticity is reviewed. The two devices are also compared on their ability to address primary customer needs, such as convenience, ease of use, durability, and price. Overall, it is concluded that the cryotherapy device more effectively relieves hand spasticity in users, although the SaeboStim's smaller size and better convenience gives it market appeal, and reveals some of the shortcomings in the preliminary design of the cryotherapy device.

Contributors

Agent

Created

Date Created
2018-05

136933-Thumbnail Image.png

Characterizing the Role of Arm Configuration on Patterns of Movement Variability in 3D Space

Description

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.

Contributors

Agent

Created

Date Created
2014-05

136952-Thumbnail Image.png

Characterizing the Role of Arm Configuration on Patterns of Movement Variability in 3D Space

Description

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.

Contributors

Agent

Created

Date Created
2014-05

135844-Thumbnail Image.png

Tracking sonic flows during fast head movements of marmoset monkeys

Description

Head turning is a common sound localization strategy in primates. A novel system that can track head movement and acoustic signals received at the entrance to the ear canal was tested to obtain binaural sound localization information during fast head

Head turning is a common sound localization strategy in primates. A novel system that can track head movement and acoustic signals received at the entrance to the ear canal was tested to obtain binaural sound localization information during fast head movement of marmoset monkey. Analysis of binaural information was conducted with a focus on inter-aural level difference (ILD) and inter-aural time difference (ITD) at various head positions over time. The results showed that during fast head turns, the ITDs showed significant and clear changes in trajectory in response to low frequency stimuli. However, significant phase ambiguity occurred at frequencies greater than 2 kHz. Analysis of ITD and ILD information with animal vocalization as the stimulus was also tested. The results indicated that ILDs may provide more information in understanding the dynamics of head movement in response to animal vocalizations in the environment. The primary significance of this experimentation is the successful implementation of a system capable of simultaneously recording head movement and acoustic signals at the ear canals. The collected data provides insight into the usefulness of ITD and ILD as binaural cues during head movement.

Contributors

Agent

Created

Date Created
2016-05

136487-Thumbnail Image.png

Current joint action problems and solutions in robotics-based stroke upper limb rehabilitation

Description

Robotic rehabilitation for upper limb post-stroke recovery is a developing technology. However, there are major issues in the implementation of this type of rehabilitation, issues which decrease efficacy. Two of the major solutions currently being explored to the upper limb

Robotic rehabilitation for upper limb post-stroke recovery is a developing technology. However, there are major issues in the implementation of this type of rehabilitation, issues which decrease efficacy. Two of the major solutions currently being explored to the upper limb post-stroke rehabilitation problem are the use of socially assistive rehabilitative robots, robots which directly interact with patients, and the use of exoskeleton-based systems of rehabilitation. While there is great promise in both of these techniques, they currently lack sufficient efficacy to objectively justify their costs. The overall efficacy to both of these techniques is about the same as conventional therapy, yet each has higher overhead costs that conventional therapy does. However there are associated long-term cost savings in each case, meaning that the actual current viability of either of these techniques is somewhat nebulous. In both cases, the problems which decrease technique viability are largely related to joint action, the interaction between robot and human in completing specific tasks, and issues in robot adaptability that make joint action difficult. As such, the largest part of current research into rehabilitative robotics aims to make robots behave in more "human-like" manners or to bypass the joint action problem entirely.

Contributors

Created

Date Created
2015-05

136593-Thumbnail Image.png

Haptic Discrimination of Object Size via Tactile Sensation vs. Vibratory Sensory Substitution

Description

Humans rely on a complex interworking of visual, tactile and proprioceptive feedback to accomplish even the most simple of daily tasks. These senses work together to provide information about the size, weight, shape, density, and texture of objects being interacted

Humans rely on a complex interworking of visual, tactile and proprioceptive feedback to accomplish even the most simple of daily tasks. These senses work together to provide information about the size, weight, shape, density, and texture of objects being interacted with. While vision is highly relied upon for many tasks, especially those involving accurate reaches, people can typically accomplish common daily skills without constant visual feedback, instead relying on tactile and proprioceptive cues. Amputees using prosthetic hands, however, do not currently have access to such cues, making these tasks impossible. This experiment was designed to test whether vibratory haptic cues could be used in replacement of tactile feedback to signal contact for a size discrimination task. Two experiments were run in which subjects were asked to identify changes in block size between consecutive trials using wither physical or virtual blocks to test the accuracy of size discrimination using tactile and haptic feedback, respectively. Blocks randomly increased or decreased in size in increments of 2 to 12 mm between trials for both experiments. This experiment showed that subjects were significantly better at determining size changes using tactile feedback than vibratory haptic cues. This suggests that, while haptic feedback can technically be used to grasp and discriminate between objects of different sizes, it does not lend the same level of input as tactile cues.

Contributors

Agent

Created

Date Created
2015-05

135177-Thumbnail Image.png

Detection of Muscle Specific EMG Signals in Post Stroke Patients

Description

Electromyography (EMG) is an extremely useful tool in extracting control signals from the human body. Needle electromyography is the current standard for obtaining superior quality muscle signals and obtaining signals corresponding to individual muscles. However, needle EMG faces many problems

Electromyography (EMG) is an extremely useful tool in extracting control signals from the human body. Needle electromyography is the current standard for obtaining superior quality muscle signals and obtaining signals corresponding to individual muscles. However, needle EMG faces many problems when converting from the laboratory to marketable devices, specifically in home devices. Many patients have issues with needles and the extra care required of needle EMG is prohibitive. Therefore, a surface EMG device that can obtain clear signals from individual muscles would be valuable to many markets in the development of next generation in home devices. Here, signals from surface EMG were analyzed using a low noise EMG evaluation system (RHD 2000; Intan Technologies). The signal to noise ratio (SNR) was calculated using MatLab. The average SNR is 4.447 for the Extensor Carpi Ulnaris, and 7.369 for the Extensor Digitorum Communis. Spectral analysis was performed using the Welch approach in MatLab. The power spectrum indicated that low frequency signals dominate the EMG of small hand muscles. Also, harmonic bands of 60Hz noise were present as part of the signal which should be accounted for with filters in future iterations of the testing method. Provided is evidence that strong, independent signals were acquired and could be used in further application of surface EMG corresponding to lifting of the fingers.

Contributors

Created

Date Created
2016-05

137739-Thumbnail Image.png

The Role of Retention and Forgetting in Context Dependent Sensorimotor Memory of Dexterous Manipulation

Description

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to that experience on the last block. On each context switch, an interference of the previous block of trials was found resulting in manipulation errors (object tilt). However, no significant re-learning was found two weeks later for the first block of trials (p = 0.826), indicating that the previously observed interference among contexts lasted a very short time. Interestingly, upon switching to the other context, sensorimotor memories again interfered with visually-based planning. This means that the memory of lifting in the first context somehow blocked the memory of lifting in the second context. In addition, the performance in the first trial two weeks later and the previous trial of the same context were not significantly different (p = 0.159). This means that subjects are able to retain long-term sensorimotor memories. Lastly, the last four trials in which subjects switched contexts were not significantly different from each other (p = 0.334). This means that the interference from sensorimotor memories of lifting in opposite contexts was weaker, thus eventually leading to the attainment of steady performance.

Contributors

Created

Date Created
2013-05

147931-Thumbnail Image.png

Developing a Polymer for Treatment of Basal Cell Carcinoma

Description

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect

This analysis explores what the time needed to harden, and time needed to degrade is of a PLGA bead, as well as whether the size of the needle injecting the bead and the addition of a drug (Vismodegib) may affect these variables. Polymer degradation and hardening are critical to understand for the polymer’s use in clinical settings, as these factors help determine the patients’ and healthcare providers’ use of the drug and estimated treatment time. Based on the literature, it is expected that the natural logarithmic polymer mass degradation forms a linear relationship to time. Polymer hardening was tested by taking video recordings of gelatin plates as they are injected with microneedles and performing RGB analysis on the polymer “beads” created. Our results for the polymer degradation experiments showed that the polymer hardened for all solutions and trials within approximately 1 minute, presenting a small amount of time in which the patient would have to remain motionless in the affected area. Both polymer bead size and drug concentration may have had a modest impact on the hardening time experiments, while bead size may affect the time required for the polymer to degrade. Based on the results, the polymer degradation is expected to last multiple weeks, which may allow for the polymer to be used as a long-term drug delivery system in treatment of basal cell carcinoma.

Contributors

Created

Date Created
2021-05

152070-Thumbnail Image.png

Electrocorticographica analysis of spontaneous conversation to localize receptive and expressive language areas

Description

When surgical resection becomes necessary to alleviate a patient's epileptiform activity, that patient is monitored by video synchronized with electrocorticography (ECoG) to determine the type and location of seizure focus. This provides a unique opportunity for researchers to gather neurophysiological

When surgical resection becomes necessary to alleviate a patient's epileptiform activity, that patient is monitored by video synchronized with electrocorticography (ECoG) to determine the type and location of seizure focus. This provides a unique opportunity for researchers to gather neurophysiological data with high temporal and spatial resolution; these data are assessed prior to surgical resection to ensure the preservation of the patient's quality of life, e.g. avoid the removal of brain tissue required for speech processing. Currently considered the "gold standard" for the mapping of cortex, electrical cortical stimulation (ECS) involves the systematic activation of pairs of electrodes to localize functionally specific brain regions. This method has distinct limitations, which often includes pain experienced by the patient. Even in the best cases, the technique suffers from subjective assessments on the parts of both patients and physicians, and high inter- and intra-observer variability. Recent advances have been made as researchers have reported the localization of language areas through several signal processing methodologies, all necessitating patient participation in a controlled experiment. The development of a quantification tool to localize speech areas in which a patient is engaged in an unconstrained interpersonal conversation would eliminate the dependence of biased patient and reviewer input, as well as unnecessary discomfort to the patient. Post-hoc ECoG data were gathered from five patients with intractable epilepsy while each was engaged in a conversation with family members or clinicians. After the data were separated into different speech conditions, the power of each was compared to baseline to determine statistically significant activated electrodes. The results of several analytical methods are presented here. The algorithms did not yield language-specific areas exclusively, as broad activation of statistically significant electrodes was apparent across cortical areas. For one patient, 15 adjacent contacts along superior temporal gyrus (STG) and posterior part of the temporal lobe were determined language-significant through a controlled experiment. The task involved a patient lying in bed listening to repeated words, and yielded statistically significant activations that aligned with those of clinical evaluation. The results of this study do not support the hypothesis that unconstrained conversation may be used to localize areas required for receptive and productive speech, yet suggests a simple listening task may be an adequate alternative to direct cortical stimulation.

Contributors

Agent

Created

Date Created
2013