Matching Items (55)
150297-Thumbnail Image.png
Description
Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of gri

Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of grip and load force rates during the period between initial contact with the object and object lift. However, this has not been validated in tasks that do not constrain digit placement. The purposes of this thesis were (1) to validate the hypothesis that force rate profiles are indicative of the control strategy used for object manipulation and (2) to test this hypothesis by comparing manipulation tasks performed with and without digit placement constraints. The first objective comprised two studies. In the first study an additional light or heavy mass was added to the base of the object. In the second study a mass was added, altering the object's center of mass (CM) location. In each experiment digit force rates were calculated between the times of initial digit contact and object lift. Digit force rates were fit to a Gaussian bell curve and the goodness of fit was compared across predictable and unpredictable mass and CM conditions. For both experiments, a predictable object mass and CM elicited bell shaped force rate profiles, indicative of feedforward control. For the second objective, a comparison of performance between subjects who performed the grasp task with either constrained or unconstrained digit contact locations was conducted. When digit location was unconstrained and CM was predictable, force rates were well fit to a bell shaped curve. However, the goodness of fit of the force rate profiles to the bell shaped curve was weaker for the constrained than the unconstrained digit placement condition. These findings seem to indicate that brain can generate an appropriate feedforward control strategy even when digit placement is unconstrained and an infinite combination of digit placement and force solutions exists to lift the object successfully. Future work is needed that investigates the role digit positioning and tactile feedback has on anticipatory control of object manipulation.
ContributorsCooperhouse, Michael A (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2011
150692-Thumbnail Image.png
Description
This dissertation includes two parts. First it focuses on discussing robust signal processing algorithms, which lead to consistent performance under perturbation or uncertainty in video target tracking applications. Projective distortion plagues the quality of long sequence mosaicking which results in loosing important target information. Some correction techniques require prior information.

This dissertation includes two parts. First it focuses on discussing robust signal processing algorithms, which lead to consistent performance under perturbation or uncertainty in video target tracking applications. Projective distortion plagues the quality of long sequence mosaicking which results in loosing important target information. Some correction techniques require prior information. A new algorithm is proposed in this dissertation to this very issue. Optimization and parameter tuning of a robust camera motion estimation as well as implementation details are discussed for a real-time application using an ordinary general-purpose computer. Performance evaluations on real-world unmanned air vehicle (UAV) videos demonstrate the robustness of the proposed algorithms. The second half of the dissertation addresses neural signal analysis and modeling. Neural waveforms were recorded from rats' motor cortical areas while rats performed a learning control task. Prior to analyzing and modeling based on the recorded neural signal, neural action potentials are processed to detect neural action potentials which are considered the basic computation unit in the brain. Most algorithms rely on simple thresholding, which can be subjective. This dissertation proposes a new detection algorithm, which is an automatic procedure based on signal-to-noise ratio (SNR) from the neural waveforms. For spike sorting, this dissertation proposes a classification algorithm based on spike features in the frequency domain and adaptive clustering method such as the self-organizing map (SOM). Another major contribution of the dissertation is the study of functional interconnectivity of neurons in an ensemble. These functional correlations among neurons reveal spatial and temporal statistical dependencies, which consequently contributes to the understanding of a neuronal substrate of meaningful behaviors. This dissertation proposes a new generalized yet simple method to study adaptation of neural ensemble activities of a rat's motor cortical areas during its cognitive learning process. Results reveal interesting temporal firing patterns underlying the behavioral learning process.
ContributorsYang, Chenhui (Author) / Si, Jennie (Thesis advisor) / Jassemidis, Leonidas (Committee member) / Buneo, Christopher (Committee member) / Abousleman, Glen (Committee member) / Arizona State University (Publisher)
Created2012
154164-Thumbnail Image.png
Description
Epilepsy is a group of disorders that cause seizures in approximately 2.2 million people in the United States. Over 30% of these patients have epilepsies that do not respond to treatment with anti-epileptic drugs. For this population, focal resection surgery could offer long-term seizure freedom. Surgery candidates undergo a myriad

Epilepsy is a group of disorders that cause seizures in approximately 2.2 million people in the United States. Over 30% of these patients have epilepsies that do not respond to treatment with anti-epileptic drugs. For this population, focal resection surgery could offer long-term seizure freedom. Surgery candidates undergo a myriad of tests and monitoring to determine where and when seizures occur. The “gold standard” method for focus identification involves the placement of electrocorticography (ECoG) grids in the sub-dural space, followed by continual monitoring and visual inspection of the patient’s cortical activity. This process, however, is highly subjective and uses dated technology. Multiple studies were performed to investigate how the evaluation process could benefit from an algorithmic adjust using current ECoG technology, and how the use of new microECoG technology could further improve the process.

Computational algorithms can quickly and objectively find signal characteristics that may not be detectable with visual inspection, but many assume the data are stationary and/or linear, which biological data are not. An empirical mode decomposition (EMD) based algorithm was developed to detect potential seizures and tested on data collected from eight patients undergoing monitoring for focal resection surgery. EMD does not require linearity or stationarity and is data driven. The results suggest that a biological data driven algorithm could serve as a useful tool to objectively identify changes in cortical activity associated with seizures.

Next, the use of microECoG technology was investigated. Though both ECoG and microECoG grids are composed of electrodes resting on the surface of the cortex, changing the diameter of the electrodes creates non-trivial changes in the physics of the electrode-tissue interface that need to be accounted for. Experimenting with different recording configurations showed that proper grounding, referencing, and amplification are critical to obtain high quality neural signals from microECoG grids.

Finally, the relationship between data collected from the cortical surface with micro and macro electrodes was studied. Simultaneous recordings of the two electrode types showed differences in power spectra that suggest the inclusion of activity, possibly from deep structures, by macroelectrodes that is not accessible by microelectrodes.
ContributorsAshmont, Kari Rich (Author) / Greger, Bradley (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Adelson, P David (Committee member) / Dudek, F Edward (Committee member) / Arizona State University (Publisher)
Created2015
Description
Through decades of clinical progress, cochlear implants have brought the world of speech and language to thousands of profoundly deaf patients. However, the technology has many possible areas for improvement, including providing information of non-linguistic cues, also called indexical properties of speech. The field of sensory substitution, providing information relating

Through decades of clinical progress, cochlear implants have brought the world of speech and language to thousands of profoundly deaf patients. However, the technology has many possible areas for improvement, including providing information of non-linguistic cues, also called indexical properties of speech. The field of sensory substitution, providing information relating one sense to another, offers a potential avenue to further assist those with cochlear implants, in addition to the promise they hold for those without existing aids. A user study with a vibrotactile device is evaluated to exhibit the effectiveness of this approach in an auditory gender discrimination task. Additionally, preliminary computational work is included that demonstrates advantages and limitations encountered when expanding the complexity of future implementations.
ContributorsButts, Austin McRae (Author) / Helms Tillery, Stephen (Thesis advisor) / Berisha, Visar (Committee member) / Buneo, Christopher (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2015
155964-Thumbnail Image.png
Description
Lower-limb prosthesis users have commonly-recognized deficits in gait and posture control. However, existing methods in balance and mobility analysis fail to provide sufficient sensitivity to detect changes in prosthesis users' postural control and mobility in response to clinical intervention or experimental manipulations and often fail to detect differences between prosthesis

Lower-limb prosthesis users have commonly-recognized deficits in gait and posture control. However, existing methods in balance and mobility analysis fail to provide sufficient sensitivity to detect changes in prosthesis users' postural control and mobility in response to clinical intervention or experimental manipulations and often fail to detect differences between prosthesis users and non-amputee control subjects. This lack of sensitivity limits the ability of clinicians to make informed clinical decisions and presents challenges with insurance reimbursement for comprehensive clinical care and advanced prosthetic devices. These issues have directly impacted clinical care by restricting device options, increasing financial burden on clinics, and limiting support for research and development. This work aims to establish experimental methods and outcome measures that are more sensitive than traditional methods to balance and mobility changes in prosthesis users. Methods and analysis techniques were developed to probe aspects of balance and mobility control that may be specifically impacted by use of a prosthesis and present challenges similar to those experienced in daily life that could improve the detection of balance and mobility changes. Using the framework of cognitive resource allocation and dual-tasking, this work identified unique characteristics of prosthesis users’ postural control and developed sensitive measures of gait variability. The results also provide broader insight into dual-task analysis and the motor-cognitive response to demanding conditions. Specifically, this work identified altered motor behavior in prosthesis users and high cognitive demand of using a prosthesis. The residual standard deviation method was developed and demonstrated to be more effective than traditional gait variability measures at detecting the impact of dual-tasking. Additionally, spectral analysis of the center of pressure while standing identified altered somatosensory control in prosthesis users. These findings provide a new understanding of prosthetic use and new, highly sensitive techniques to assess balance and mobility in prosthesis users.
ContributorsHoward, Charla Lindley (Author) / Abbas, James (Thesis advisor) / Buneo, Christopher (Committee member) / Lynskey, Jim (Committee member) / Santello, Marco (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
156147-Thumbnail Image.png
Description
The ultimate goal of human movement control research is to understand how natural movements performed in daily activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Here, patterns of arm joint control during daily functional tasks were examined, which are performed through rotation

The ultimate goal of human movement control research is to understand how natural movements performed in daily activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Here, patterns of arm joint control during daily functional tasks were examined, which are performed through rotation of the shoulder, elbow, and wrist with the use of seven DOF: shoulder flexion/extension, abduction/adduction, and internal/external rotation; elbow flexion/extension and pronation/supination; wrist flexion/extension and radial/ulnar deviation. Analyzed movements imitated two activities of daily living: combing the hair and turning the page in a book. Kinematic and kinetic analyses were conducted. The studied kinematic characteristics were displacements of the 7 DOF and contribution of each DOF to hand velocity. The kinetic analysis involved computation of 3-dimensional vectors of muscle torque (MT), interaction torque (IT), gravity torque (GT), and net torque (NT) at the shoulder, elbow, and wrist. Using a relationship NT = MT + GT + IT, the role of active control and the passive factors (gravitation and inter-segmental dynamics) in rotation of each joint was assessed by computing MT contribution (MTC) to NT. MTC was computed using the ratio of the signed MT projection on NT to NT magnitude. Despite the variety of joint movements required across the different tasks, 3 patterns of shoulder and elbow coordination prevailed in each movement: 1) active rotation of the shoulder and predominantly passive rotation of the elbow; 2) active rotation of the elbow and predominantly passive rotation of the shoulder; and 3) passive rotation of both joints. Analysis of wrist control suggested that MT mainly compensates for passive torque and provides adjustment of wrist motion according to requirements of both tasks. The 3 shoulder-elbow coordination patterns during which at least one joint moves largely passively represent joint control primitives underlying performance of well-learned arm movements, although these patterns may be less prevalent during non-habitual movements. The advantage of these control primitives is that they require minimal neural effort for joint coordination, and thus increase neural resources that can be used for cognitive tasks.
ContributorsMarshall, Dirk (Author) / Dounskaia, Natalia (Thesis advisor) / Schaefer, Sydney (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
156156-Thumbnail Image.png
Description
The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were studied during daily functional tasks, which were performed through the

The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were studied during daily functional tasks, which were performed through the rotation of seven DOF in the arm. Analyzed movements which imitated the following 3 activities of daily living: moving an empty soda can from a table and placing it on a further position; placing the empty soda can from initial position at table to a position at shoulder level on a shelf; and placing the empty soda can from initial position at table to a position at eye level on a shelf. Kinematic and kinetic analyses were conducted for these three movements. The studied kinematic characteristics were: hand trajectory in the sagittal plane, displacements of the 7 DOF, and contribution of each DOF to hand velocity. The kinetic analysis involved computation of 3-dimensional vectors of muscle torque (MT), interaction torque (IT), gravity torque (GT), and net torque (NT) at the shoulder, elbow, and wrist. Using the relationship NT = MT + GT + IT, the role of active control and passive factors (gravitation and inter-segmental dynamics) in rotation of each joint by computing MT contribution (MTC) to NT was assessed. MTC was computed using the ratio of the signed MT projection on NT to NT magnitude. Despite a variety of joint movements available across the different tasks, 3 patterns of shoulder and elbow coordination prevailed in each movement: 1) active rotation of the shoulder and predominantly passive rotation of the elbow; 2) active rotation of the elbow and predominantly passive rotation of the shoulder; and 3) passive rotation of both joints. Analysis of wrist control suggested that MT mainly compensates for passive torque and provides adjustment of wrist motion according to requirements of each task. In conclusion, it was observed that the 3 shoulder-elbow coordination patterns (during which at least one joint moved) passively represented joint control primitives, underlying the performance of well-learned arm movements, although these patterns may be less prevalent during non-habitual movements.
ContributorsSansgiri, Dattaraj (Author) / Dounskaia, Natalia (Thesis advisor) / Schaefer, Sydney (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
155935-Thumbnail Image.png
Description
Object manipulation is a common sensorimotor task that humans perform to interact with the physical world. The first aim of this dissertation was to characterize and identify the role of feedback and feedforward mechanisms for force control in object manipulation by introducing a new feature based on force trajectories to

Object manipulation is a common sensorimotor task that humans perform to interact with the physical world. The first aim of this dissertation was to characterize and identify the role of feedback and feedforward mechanisms for force control in object manipulation by introducing a new feature based on force trajectories to quantify the interaction between feedback- and feedforward control. This feature was applied on two grasp contexts: grasping the object at either (1) predetermined or (2) self-selected grasp locations (“constrained” and “unconstrained”, respectively), where unconstrained grasping is thought to involve feedback-driven force corrections to a greater extent than constrained grasping. This proposition was confirmed by force feature analysis. The second aim of this dissertation was to quantify whether force control mechanisms differ between dominant and non-dominant hands. The force feature analysis demonstrated that manipulation by the dominant hand relies on feedforward control more than the non-dominant hand. The third aim was to quantify coordination mechanisms underlying physical interaction by dyads in object manipulation. The results revealed that only individuals with worse solo performance benefit from interpersonal coordination through physical couplings, whereas the better individuals do not. This work showed that naturally emerging leader-follower roles, whereby the leader in dyadic manipulation exhibits significant greater force changes than the follower. Furthermore, brain activity measured through electroencephalography (EEG) could discriminate leader and follower roles as indicated power modulation in the alpha frequency band over centro-parietal areas. Lastly, this dissertation suggested that the relation between force and motion (arm impedance) could be an important means for communicating intended movement direction between biological agents.
ContributorsMojtahedi, Keivan (Author) / Santello, Marco (Thesis advisor) / Greger, Bradley (Committee member) / Artemiadis, Panagiotis (Committee member) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2017
157362-Thumbnail Image.png
Description
Vagus nerve stimulation (VNS) has shown benefits beyond its original therapeutic application, though there is a lack of research into these benefits in healthy and athletic populations. To address this gap in the VNS literature, the present study addresses the feasibility and possible efficacy of transcutaneous VNS (tVNS) in improving

Vagus nerve stimulation (VNS) has shown benefits beyond its original therapeutic application, though there is a lack of research into these benefits in healthy and athletic populations. To address this gap in the VNS literature, the present study addresses the feasibility and possible efficacy of transcutaneous VNS (tVNS) in improving performance and various biometrics during two athletic tasks: golf tee shots and baseball pitching. Performance, cortical dynamics, anxiety measures, muscle excitation, and heart rate characteristics were assessed before and after stimulation using electroencephalography (EEG), the State-Trait Anxiety Inventory (STAI), and electrocardiography (ECG) during the baseball and golf tasks as well as electromyography (EMG) for muscle excitation in the golf participants. Golfers exhibited increased perceived quality of each repetition (independent from outcome) and an improvement in state and trait anxiety after stimulation. Golfers in the active stimulation group also showed a greater reduction in right upper trapezius muscle excitation when compared to the sham stimulation group. Baseball pitchers exhibited an increase in perceived quality of each repetition (independent from outcome) after active stimulation but not an improvement of state and trait anxiety. No significant effects of stimulation Priming, stimulation Type, or the Priming×Type interaction were seen in heart rate, EEG, or performance in the golf or baseball tasks. The present study supports the feasibility of tVNS in sports and athletic tasks and suggests the need for future research to investigate further into the effects of tVNS on the performance, psychologic, and physiologic attributes of athletes during competition.
ContributorsLindley, Kyle (Author) / Tyler, William J (Thesis advisor) / Wyckoff, Sarah (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
156810-Thumbnail Image.png
Description
Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution interfaces that can survive the environment and be well tolerated

Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution interfaces that can survive the environment and be well tolerated by the nervous system under chronic use. The sensory encoding aspect optimally interfaces at a scale sufficient to evoke perception but focal in nature to maximize resolution and evoke more complex and nuanced sensations. Microelectrode arrays can maintain high spatial density, operating on the scale of cortical columns, and can be either penetrating or non-penetrating. The non-penetrating subset sits on the tissue surface without puncturing the parenchyma and is known to engender minimal tissue response and less damage than the penetrating counterpart, improving long term viability in vivo. Provided non-penetrating microelectrodes can consistently evoke perception and maintain a localized region of activation, non-penetrating micro-electrodes may provide an ideal platform for a high performing neural prosthesis; this dissertation explores their functional capacity.

The scale at which non-penetrating electrode arrays can interface with cortex is evaluated in the context of extracting useful information. Articulate movements were decoded from surface microelectrode electrodes, and additional spatial analysis revealed unique signal content despite dense electrode spacing. With a basis for data extraction established, the focus shifts towards the information encoding half of neural interfaces. Finite element modeling was used to compare tissue recruitment under surface stimulation across electrode scales. Results indicated charge density-based metrics provide a reasonable approximation for current levels required to evoke a visual sensation and showed tissue recruitment increases exponentially with electrode diameter. Micro-scale electrodes (0.1 – 0.3 mm diameter) could sufficiently activate layers II/III in a model tuned to striate cortex while maintaining focal radii of activated tissue.

In vivo testing proceeded in a nonhuman primate model. Stimulation consistently evoked visual percepts at safe current thresholds. Tracking perception thresholds across one year reflected stable values within minimal fluctuation. Modulating waveform parameters was found useful in reducing charge requirements to evoke perception. Pulse frequency and phase asymmetry were each used to reduce thresholds, improve charge efficiency, lower charge per phase – charge density metrics associated with tissue damage. No impairments to photic perception were observed during the course of the study, suggesting limited tissue damage from array implantation or electrically induced neurotoxicity. The subject consistently identified stimulation on closely spaced electrodes (2 mm center-to-center) as separate percepts, indicating sub-visual degree discrete resolution may be feasible with this platform. Although continued testing is necessary, preliminary results supports epicortical microelectrode arrays as a stable platform for interfacing with neural tissue and a viable option for bi-directional BCI applications.
ContributorsOswalt, Denise (Author) / Greger, Bradley (Thesis advisor) / Buneo, Christopher (Committee member) / Helms-Tillery, Stephen (Committee member) / Mirzadeh, Zaman (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2018