Matching Items (49)

128790-Thumbnail Image.png

The Proprioceptive Map of the Arm Is Systematic and Stable, but Idiosyncratic

Description

Visual and somatosensory signals participate together in providing an estimate of the hand's spatial location. While the ability of subjects to identify the spatial location of their hand based on

Visual and somatosensory signals participate together in providing an estimate of the hand's spatial location. While the ability of subjects to identify the spatial location of their hand based on visual and proprioceptive signals has previously been characterized, relatively few studies have examined in detail the spatial structure of the proprioceptive map of the arm. Here, we reconstructed and analyzed the spatial structure of the estimation errors that resulted when subjects reported the location of their unseen hand across a 2D horizontal workspace. Hand position estimation was mapped under four conditions: with and without tactile feedback, and with the right and left hands. In the task, we moved each subject's hand to one of 100 targets in the workspace while their eyes were closed. Then, we either a) applied tactile stimulation to the fingertip by allowing the index finger to touch the target or b) as a control, hovered the fingertip 2 cm above the target. After returning the hand to a neutral position, subjects opened their eyes to verbally report where their fingertip had been. We measured and analyzed both the direction and magnitude of the resulting estimation errors. Tactile feedback reduced the magnitude of these estimation errors, but did not change their overall structure. In addition, the spatial structure of these errors was idiosyncratic: each subject had a unique pattern of errors that was stable between hands and over time. Finally, we found that at the population level the magnitude of the estimation errors had a characteristic distribution over the workspace: errors were smallest closer to the body. The stability of estimation errors across conditions and time suggests the brain constructs a proprioceptive map that is reliable, even if it is not necessarily accurate. The idiosyncrasy across subjects emphasizes that each individual constructs a map that is unique to their own experiences.

Contributors

Agent

Created

Date Created
  • 2011-11-16

128815-Thumbnail Image.png

Multisensory Interactions Influence Neuronal Spike Train Dynamics in the Posterior Parietal Cortex

Description

Although significant progress has been made in understanding multisensory interactions at the behavioral level, their underlying neural mechanisms remain relatively poorly understood in cortical areas, particularly during the control of

Although significant progress has been made in understanding multisensory interactions at the behavioral level, their underlying neural mechanisms remain relatively poorly understood in cortical areas, particularly during the control of action. In recent experiments where animals reached to and actively maintained their arm position at multiple spatial locations while receiving either proprioceptive or visual-proprioceptive position feedback, multisensory interactions were shown to be associated with reduced spiking (i.e. subadditivity) as well as reduced intra-trial and across-trial spiking variability in the superior parietal lobule (SPL). To further explore the nature of such interaction-induced changes in spiking variability we quantified the spike train dynamics of 231 of these neurons. Neurons were classified as Poisson, bursty, refractory, or oscillatory (in the 13–30 Hz “beta-band”) based on their spike train power spectra and autocorrelograms. No neurons were classified as Poisson-like in either the proprioceptive or visual-proprioceptive conditions. Instead, oscillatory spiking was most commonly observed with many neurons exhibiting these oscillations under only one set of feedback conditions. The results suggest that the SPL may belong to a putative beta-synchronized network for arm position maintenance and that position estimation may be subserved by different subsets of neurons within this network depending on available sensory information. In addition, the nature of the observed spiking variability suggests that models of multisensory interactions in the SPL should account for both Poisson-like and non-Poisson variability.

Contributors

Agent

Created

Date Created
  • 2016-12-29

128225-Thumbnail Image.png

Neural correlates of learning and trajectory planning in the posterior parietal cortex

Description

The posterior parietal cortex (PPC) is thought to play an important role in the planning of visually-guided reaching movements. However, the relative roles of the various subdivisions of the PPC

The posterior parietal cortex (PPC) is thought to play an important role in the planning of visually-guided reaching movements. However, the relative roles of the various subdivisions of the PPC in this function are still poorly understood. For example, studies of dorsal area 5 point to a representation of reaches in both extrinsic (endpoint) and intrinsic (joint or muscle) coordinates, as evidenced by partial changes in preferred directions and positional discharge with changes in arm posture. In contrast, recent findings suggest that the adjacent medial intraparietal area (MIP) is involved in more abstract representations, e.g., encoding reach target in visual coordinates. Such a representation is suitable for planning reach trajectories involving shortest distance paths to targets straight ahead. However, it is currently unclear how MIP contributes to the planning of other types of trajectories, including those with various degrees of curvature. Such curved trajectories recruit different joint excursions and might help us address whether their representation in the PPC is purely in extrinsic coordinates or in intrinsic ones as well. Here we investigated the role of the PPC in these processes during an obstacle avoidance task for which the animals had not been explicitly trained. We found that PPC planning activity was predictive of both the spatial and temporal aspects of upcoming trajectories. The same PPC neurons predicted the upcoming trajectory in both endpoint and joint coordinates. The predictive power of these neurons remained stable and accurate despite concomitant motor learning across task conditions. These findings suggest the role of the PPC can be extended from specifying abstract movement goals to expressing these plans as corresponding trajectories in both endpoint and joint coordinates. Thus, the PPC appears to contribute to reach planning and approach-avoidance arm motions at multiple levels of representation.

Contributors

Created

Date Created
  • 2013-05-17

132198-Thumbnail Image.png

The feasibility, development, and accuracy of a re-instrumented force sensing retracting suction neurosurgical tool

Description

This thesis investigates the feasibility, development, and accuracy of implementing two inline sets of uniaxial strain gauges for a neurosurgical force sensing suction and retraction (FSSR) instrument to determine force

This thesis investigates the feasibility, development, and accuracy of implementing two inline sets of uniaxial strain gauges for a neurosurgical force sensing suction and retraction (FSSR) instrument to determine force metrics such as magnitude, location, and orientation of applied force in real time. Excess force applied during a neurosurgery could lead to complications for the patient during and after surgery, thus there is clinical need for a quantitative real time tool-tissue feedback for various surgical tools. A force-based metric has been observed to be highly correlated to improving not only surgical training but also the outcome of surgical procedures. Past literature and previous studies attempted to design a force sensing retractor. Although previous investigations and prototypes have developed methods and protocols to detect small magnitude forces applied, they lacked the ability to detect the magnitude of force without knowing the distance of the applied force. This is a critical limitation because the location of a net applied force can vary along a retractor during surgery and is often unseen and cannot be measured during surgery. The main goal of this current investigation is to modify the previous design of the force sensing suction retractor (FSSR) device with a new placement of strain gauges, utilizing a novel configuration of an aligned pair of strain gauge arrangement with only knowing the distance between the pair of gauge sets and the strain data collected. The FSSR was a stainless steel suction tube retrofitted with 8 gauges: two sets of 4 gauges aligned and separated radially by 90 degrees within each set. Calibrations test and blind load tests were conducted to determine accuracy of the instrument for detecting the force metrics. It was found that a majority of 40 variations for the calibration tests maintained a percent difference under 10% when comparing actual and calculated values. Specifically, using calibration test 2 for blind test 2 the orientation yielded a calculated value that was 2.1 degrees different. Blind test 2 for the magnitude yielded a calculated value that was .135 N different, which is a 9.104 % difference. Also, blind test 2 set 1 and set 2 for the location of applied load from set 1 and set 2 yielded a calculated value that was 7.334 mm different, which is an 8.95 % difference for set 1 and a 15.63 % difference for set 2. Possible limitations and errors in the protocol that may have increased the discrepancy between actual and calculated values include how accurate the strain gauges were placed in terms of both alignment and radial orientation. Future work in regards to improving the new FSSR prototype, is to first develop a better method to ensure accurate placement of gauges, both in paired alignment between sets and radial separation within sets. Overall, the clinical considerations for a force sensing tool is aimed at minimizing patient injury during surgery, devices such as the force sensing suction retractor is an example of novel technology that could become a standard technology within the operating room.

Contributors

Agent

Created

Date Created
  • 2019-05

134674-Thumbnail Image.png

3D Robotic Assessment of Proprioception for Up, Down, and Back Directions

Description

Background. Proprioception plays a large role in everyday functioning, involving both information of body position and movement (Johnson & Panayotis, 2010). Clinical assessments of proprioception are largely subjective and are

Background. Proprioception plays a large role in everyday functioning, involving both information of body position and movement (Johnson & Panayotis, 2010). Clinical assessments of proprioception are largely subjective and are not reliable measures for testing proprioception in impaired or unimpaired individuals. Recent advancements in technology and robotics have brought about new assessments that involve position matching and other paradigms. However, the results are confined to the horizontal plane and only look at a very small subset of human proprioceptive ability. Objective. The present study looks to overcome these limitations and examine differences in proprioceptive sensitivity across different directions in 3D space. Methods. Participants were recruited from Arizona State University to perform a "same-different" discrimination test using a robotic arm. Each participant was tested along two of the three directions, and within each direction, proprioception at four distances (1-4 cm) was tested. Performance was quantified using percent correct, d' analysis, and permutation testing on median and variance values. Results. Proprioceptive sensitivity was significantly greater in the up direction vs. down and back across all distances. The greatest difference in sensitivity occurred at 3 cm; permutation tests using median and variance values from percent correct and d' found statistical significance at this distance in the up vs. down and up vs. back comparisons. Conclusions. There is evidence that proprioceptive sensitivity is greater in an anti-gravity direction (up), in comparison to gravity-assisted or gravity-neutral (down and back) directions.

Contributors

Agent

Created

Date Created
  • 2016-12

135177-Thumbnail Image.png

Detection of Muscle Specific EMG Signals in Post Stroke Patients

Description

Electromyography (EMG) is an extremely useful tool in extracting control signals from the human body. Needle electromyography is the current standard for obtaining superior quality muscle signals and obtaining signals

Electromyography (EMG) is an extremely useful tool in extracting control signals from the human body. Needle electromyography is the current standard for obtaining superior quality muscle signals and obtaining signals corresponding to individual muscles. However, needle EMG faces many problems when converting from the laboratory to marketable devices, specifically in home devices. Many patients have issues with needles and the extra care required of needle EMG is prohibitive. Therefore, a surface EMG device that can obtain clear signals from individual muscles would be valuable to many markets in the development of next generation in home devices. Here, signals from surface EMG were analyzed using a low noise EMG evaluation system (RHD 2000; Intan Technologies). The signal to noise ratio (SNR) was calculated using MatLab. The average SNR is 4.447 for the Extensor Carpi Ulnaris, and 7.369 for the Extensor Digitorum Communis. Spectral analysis was performed using the Welch approach in MatLab. The power spectrum indicated that low frequency signals dominate the EMG of small hand muscles. Also, harmonic bands of 60Hz noise were present as part of the signal which should be accounted for with filters in future iterations of the testing method. Provided is evidence that strong, independent signals were acquired and could be used in further application of surface EMG corresponding to lifting of the fingers.

Contributors

Created

Date Created
  • 2016-05

135844-Thumbnail Image.png

Tracking sonic flows during fast head movements of marmoset monkeys

Description

Head turning is a common sound localization strategy in primates. A novel system that can track head movement and acoustic signals received at the entrance to the ear canal was

Head turning is a common sound localization strategy in primates. A novel system that can track head movement and acoustic signals received at the entrance to the ear canal was tested to obtain binaural sound localization information during fast head movement of marmoset monkey. Analysis of binaural information was conducted with a focus on inter-aural level difference (ILD) and inter-aural time difference (ITD) at various head positions over time. The results showed that during fast head turns, the ITDs showed significant and clear changes in trajectory in response to low frequency stimuli. However, significant phase ambiguity occurred at frequencies greater than 2 kHz. Analysis of ITD and ILD information with animal vocalization as the stimulus was also tested. The results indicated that ILDs may provide more information in understanding the dynamics of head movement in response to animal vocalizations in the environment. The primary significance of this experimentation is the successful implementation of a system capable of simultaneously recording head movement and acoustic signals at the ear canals. The collected data provides insight into the usefulness of ITD and ILD as binaural cues during head movement.

Contributors

Agent

Created

Date Created
  • 2016-05

133425-Thumbnail Image.png

Viability of Cryotherapy Device for Spastic Relief Compared to Current Electrotherapy Device

Description

Spasticity is a neurological disorder in which a target group of muscles remain in a contracted state. In addition to interfering with the function of these muscles, spasticity causes chronic

Spasticity is a neurological disorder in which a target group of muscles remain in a contracted state. In addition to interfering with the function of these muscles, spasticity causes chronic pain and discomfort. Often found in patients with cerebral palsy, multiple sclerosis, or stroke history, spasticity affects an estimated twelve million people worldwide. Not only does spasticity cause discomfort and loss of function, but the condition can lead to contractures, or permanent shortenings of the muscle and connective tissue, if left untreated. Current treatments for spasticity are primarily different forms of muscle relaxant pharmaceuticals. Almost all of these drugs, however, carry unwanted side effects, including total muscle weakness, liver toxicity, and possible dependence. Additionally, kinesiotherapy, conducted by physical therapists at rehabilitation clinics, is often prescribed to people suffering from spasticity. Since kinesiotherapy requires frequent practice to be effective, proper treatment requires constant professional care and clinic appointments, discouraging patient compliance. Consequently, a medical device that could automate relief for spasticity outside of a clinic is desired in the market. While a number of different dynamic splints for hand spasticity are currently on the market, research has shown that these devices, which simply brace the hand in an extended position, do not work through any mechanism to decrease spastic tension over time. Two methods of temporarily reducing spasticity that have been observed in clinical studies are cryotherapy, or the decrease of temperature on a target area, and electrotherapy, which is the delivery of regulated electrical pulses to a target area. It is possible that either of these mechanisms could be incorporated into a medical device aimed toward spastic relief. In fact, electrotherapy is used in a current market device called the SaeboStim, which is advertised to help stroke recovery and spastic reduction. The purpose of this paper is to evaluate the viability of a potential spastic relief device that utilizes cryotherapy to a current and closest competitor, the SaeboStim. The effectiveness of each device in relieving spasticity is reviewed. The two devices are also compared on their ability to address primary customer needs, such as convenience, ease of use, durability, and price. Overall, it is concluded that the cryotherapy device more effectively relieves hand spasticity in users, although the SaeboStim's smaller size and better convenience gives it market appeal, and reveals some of the shortcomings in the preliminary design of the cryotherapy device.

Contributors

Agent

Created

Date Created
  • 2018-05

136933-Thumbnail Image.png

Characterizing the Role of Arm Configuration on Patterns of Movement Variability in 3D Space

Description

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.

Contributors

Agent

Created

Date Created
  • 2014-05

136593-Thumbnail Image.png

Haptic Discrimination of Object Size via Tactile Sensation vs. Vibratory Sensory Substitution

Description

Humans rely on a complex interworking of visual, tactile and proprioceptive feedback to accomplish even the most simple of daily tasks. These senses work together to provide information about the

Humans rely on a complex interworking of visual, tactile and proprioceptive feedback to accomplish even the most simple of daily tasks. These senses work together to provide information about the size, weight, shape, density, and texture of objects being interacted with. While vision is highly relied upon for many tasks, especially those involving accurate reaches, people can typically accomplish common daily skills without constant visual feedback, instead relying on tactile and proprioceptive cues. Amputees using prosthetic hands, however, do not currently have access to such cues, making these tasks impossible. This experiment was designed to test whether vibratory haptic cues could be used in replacement of tactile feedback to signal contact for a size discrimination task. Two experiments were run in which subjects were asked to identify changes in block size between consecutive trials using wither physical or virtual blocks to test the accuracy of size discrimination using tactile and haptic feedback, respectively. Blocks randomly increased or decreased in size in increments of 2 to 12 mm between trials for both experiments. This experiment showed that subjects were significantly better at determining size changes using tactile feedback than vibratory haptic cues. This suggests that, while haptic feedback can technically be used to grasp and discriminate between objects of different sizes, it does not lend the same level of input as tactile cues.

Contributors

Agent

Created

Date Created
  • 2015-05