Matching Items (48)
Filtering by

Clear all filters

152340-Thumbnail Image.png
Description
A noninvasive optical method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm that is a peak absorbance of hemoglobin. As the glucose concentration in the blood decreases, its

A noninvasive optical method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm that is a peak absorbance of hemoglobin. As the glucose concentration in the blood decreases, its osmolarity also decreases and the RBCs swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds. The changes in size of the RBC cells in response to glucose concentration changes were confirmed using a cell counter and also visually under microscope. This method does not allow measuring the glucose concentration with an absolute concentration calibration. It is directed towards development of a device to monitor the changes in glucose concentration as an aid to diabetic management. This method might be improvised for precision and resolution and be developed as a ring or an earring that patients can wear.
ContributorsRajan, Shiny Amala Priya (Author) / Towe, Bruce (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / LaBelle, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2013
153295-Thumbnail Image.png
Description
Cellular heterogeneity is a key factor in various cellular processes as well as in disease development, especially associated with immune response and cancer progression. Cell-to-cell variability is considered to be one of the major obstacles in early detection and successful treatment of cancer. Most present technologies are based on

Cellular heterogeneity is a key factor in various cellular processes as well as in disease development, especially associated with immune response and cancer progression. Cell-to-cell variability is considered to be one of the major obstacles in early detection and successful treatment of cancer. Most present technologies are based on bulk cell analysis, which results in averaging out the results acquired from a group of cells and hence missing important information about individual cells and their behavior. Understanding the cellular behavior at the single-cell level can help in obtaining a complete profile of the cell and to get a more in-depth knowledge of cellular processes. For example, measuring transmembrane fluxes oxygen can provide a direct readout of the cell metabolism.

The goal of this thesis is to design, optimize and implement a device that can measure the oxygen consumption rate (OCR) of live single cells. A microfluidic device has been designed with the ability to rapidly seal and unseal microchambers containing individual cells and an extracellular optical oxygen sensor for measuring the OCR of live single cells. The device consists of two parts, one with the sensor in microwells (top half) and the other with channels and cells trapped in Pachinko-type micro-traps (bottom half). When the two parts of the device are placed together the wells enclose each cell. Oil is flown in through the channels of the device to produce isolated and sealed microchamber around each cell. Different fluids can be flowed in and out of the device, alternating with oil, to rapidly switch between sealed and unsealed microenvironment around each cell. A fluorescent ratiometric dual pH and oxygen sensor is placed in each well. The thesis focuses on measuring changes in the oxygen consumption rate of each cell within a well. Live and dead cells are identified using a fluorescent live/dead cell assay. Finally, the technology is designed to be scalable for high-throughput applications by controlling the flow rate of the system and increasing the cell array density.
ContributorsRodrigues, Meryl (Author) / Meldrum, Deirdre (Thesis advisor) / Kelbauskas, Laimonas (Committee member) / LaBelle, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
151239-Thumbnail Image.png
Description
Biosensors offer excellent diagnostic methods through precise quantification of bodily fluid biomarkers and could fill an important niche in diagnostic screening. The long term goal of this research is the development of an impedance immunosensor for easy-to-use, rapid, sensitive and selective simultaneously multiplexed quantification of bodily fluid disease biomarkers. To

Biosensors offer excellent diagnostic methods through precise quantification of bodily fluid biomarkers and could fill an important niche in diagnostic screening. The long term goal of this research is the development of an impedance immunosensor for easy-to-use, rapid, sensitive and selective simultaneously multiplexed quantification of bodily fluid disease biomarkers. To test the hypothesis that various cytokines induce empirically determinable response frequencies when captured by printed circuit board (PCB) impedance immunosensor surface, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods were used to test PCB biosensors versus multiple cytokine biomarkers to determine limits of detection, background interaction and response at all sweep frequencies. Results indicated that sensors for cytokine Interleukin-12 (IL-12) detected their target over three decades of concentration and were tolerant to high levels of background protein. Further, the hypothesis that cytokine analytes may be rapidly detected via constant frequency impedance immunosensing without sacrificing undue sensitivity, CV, EIS, impedance-time (Zt) methods and modeling were used to test CHITM gold electrodes versus IL-12 over different lengths of time to determine limits of detection, detection time, frequency of response and consistent cross-platform sensor performance. Modeling and Zt studies indicate interrogation of the electrode with optimum frequency could be used for detection of different target concentrations within 90 seconds of sensor exposure and that interrogating the immunosensor with fixed, optimum frequency could be used for sensing target antigen. This informs usability of fixed-frequency impedance methods for biosensor research and particularly for clinical biosensor use. Finally, a multiplexing impedance immunosensor prototype for quantification of biomarkers in various body fluids was designed for increased automation of sample handling and testing. This enables variability due to exogenous factors and increased rapidity of assay with eased sensor fabrication. Methods were provided for simultaneous multiplexing through multisine perturbation of a sensor, and subsequent data processing. This demonstrated ways to observe multiple types of antibody-antigen affinity binding events in real time, reducing the number of sensors and target sample used in the detection and quantification of multiple biomarkers. These features would also improve the suitability of the sensor for clinical multiplex detection of disease biomarkers.
ContributorsFairchild, Aaron (Author) / La Belle, Jeffrey T (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Nagaraj, Vinay (Committee member) / Pizziconi, Vince (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2012
149969-Thumbnail Image.png
Description
In the search for chemical biosensors designed for patient-based physiological applications, non-invasive diagnostic approaches continue to have value. The work described in this thesis builds upon previous breath analysis studies. In particular, it seeks to assess the adsorptive mechanisms active in both acetone and ethanol biosensors designed for

In the search for chemical biosensors designed for patient-based physiological applications, non-invasive diagnostic approaches continue to have value. The work described in this thesis builds upon previous breath analysis studies. In particular, it seeks to assess the adsorptive mechanisms active in both acetone and ethanol biosensors designed for breath analysis. The thermoelectric biosensors under investigation were constructed using a thermopile for transduction and four different materials for biorecognition. The analytes, acetone and ethanol, were evaluated under dry-air and humidified-air conditions. The biosensor response to acetone concentration was found to be both repeatable and linear, while the sensor response to ethanol presence was also found to be repeatable. The different biorecognition materials produced discernible thermoelectric responses that were characteristic for each analyte. The sensor output data is presented in this report. Additionally, the results were evaluated against a mathematical model for further analysis. Ultimately, a thermoelectric biosensor based upon adsorption chemistry was developed and characterized. Additional work is needed to characterize the physicochemical action mechanism.
ContributorsWilson, Kimberly (Author) / Guilbeau, Eric (Thesis advisor) / Pizziconi, Vincent (Thesis advisor) / LaBelle, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2011
154140-Thumbnail Image.png
Description
Olecranon fractures account for approximately 10% of upper extremity fractures and 95% of them require surgical fixation. Most of the clinical, retrospective and biomechanical studies have supported plate fixation over other surgical fixation techniques since plates have demonstrated low incidence of reoperation, high fixation stability and resumption of activities of

Olecranon fractures account for approximately 10% of upper extremity fractures and 95% of them require surgical fixation. Most of the clinical, retrospective and biomechanical studies have supported plate fixation over other surgical fixation techniques since plates have demonstrated low incidence of reoperation, high fixation stability and resumption of activities of daily living (ADL) earlier. Thus far, biomechanical studies have been helpful in evaluating and comparing different plate fixation constructs based on fracture stability. However, they have not provided information that can be used to design rehabilitation protocols such as information that relates load at the hand with tendon tension or load at the interface between the plate and the bone. The set-ups used in biomechanical studies have included simple mechanical testing machines that either measured construct stiffness by cyclic loading the specimens or construct strength by performing ramp load until failure. Some biomechanical studies attempted to simulate tendon tension but the in-vivo tension applied to the tendon remains unknown. In this study, a novel procedure to test the olecranon fracture fixation using modern olecranon plates was developed to improve the biomechanical understanding of failures and to help determine the weights that can be safely lifted and the range of motion (ROM) that should be performed during rehabilitation procedures.

Design objectives were defined based on surgeon's feedback and analysis of unmet needs in the area of biomechanical testing. Four pilot cadaveric specimens were prepared to run on an upper extremity feedback controller and the set-up was validated based on the design objectives. Cadaveric specimen preparation included a series of steps such as dissection, suturing and potting that were standardized and improved iteratively after pilot testing. Additionally, a fracture and plating protocol was developed and fixture lengths were standardized based on anthropometric data. Results from the early pilot studies indicated shortcomings in the design, which was then iteratively refined for the subsequent studies. The final pilot study demonstrated that all of the design objectives were met. This system is planned for use in future studies that will assess olecranon fracture fixation and that will investigate the safety of rehabilitation protocols.
ContributorsJain, Saaransh (Author) / Abbas, James (Thesis advisor) / LaBelle, Jeffrey (Thesis advisor) / Jacofsky, Marc (Committee member) / Arizona State University (Publisher)
Created2015
136771-Thumbnail Image.png
DescriptionMy main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.
ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2011-12
136778-Thumbnail Image.png
Description
The Honors Thesis involved the use of vertically-aligned, piezoelectric nanowire sensor arrays configured by Dr. Henry A. Sodano and Dr. Aneesh Koka from the University of Florida, in order to acquire acceleration data. Originally, the project was focused on interfacing and calibrating the barium titanate (BaTio3) sensors to measure wall

The Honors Thesis involved the use of vertically-aligned, piezoelectric nanowire sensor arrays configured by Dr. Henry A. Sodano and Dr. Aneesh Koka from the University of Florida, in order to acquire acceleration data. Originally, the project was focused on interfacing and calibrating the barium titanate (BaTio3) sensors to measure wall shear stress, a fluid dynamic characteristic. In order to gain an understanding of these novel piezoelectric sensors, the experiments performed by Sodano and Koka were to be investigated, replicated, and results reproduced. After initial trial phases, signals failed to be consistently measured from the sensors and the project's emphasis was re-defined. The outlined goals were 1) to re-design the initial system used for signal acquisition, 2) test the improved signal acquisition system, 3) successfully measure output signals from the BaTiO3 nanowire sensors, and 4) determine the cause for inconsistent signal measurements from the piezoelectric nanawire sensors. Following a detailed review of the previous experimental procedures and the initial signal acquisition system, an improved acquisition system was designed and its expected behavior was tested and verified. Despite the introduction of the improved acquisition system, voltage outputs were unable to be measured as a function of shaker table acceleration. It was impossible to verify the effect of the improved signal acquisition system on the measured BaTiO3 nanowire sensor output. Based on an analysis of data collected using a commercial 3-axis acceleromoeter, it is hypothesized that the BaTiO3 nanowire sensors were broken after the first experimental trial due to an excessively applied force from an external source (i.e. shaker table, improper handling during experimentation, and/or improper handling during transportation).
ContributorsThomas, Jonah (Author) / Frakes, David (Thesis director) / LaBelle, Jeffrey (Contributor) / Barrett, The Honors College (Contributor)
Created2014-05
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136597-Thumbnail Image.png
Description
In order to address infant respiratory distress syndrome, this study attempts to develop and characterize a textile strain gauge fabricated with stainless steel, wool, elastic, and tencel. Faire Isle knitted patterns are investigated in order to create channels of conductivity for a linear sensor. The effect linear yarn density on

In order to address infant respiratory distress syndrome, this study attempts to develop and characterize a textile strain gauge fabricated with stainless steel, wool, elastic, and tencel. Faire Isle knitted patterns are investigated in order to create channels of conductivity for a linear sensor. The effect linear yarn density on linearity and sensitivity and hysteresis of the sensors is also investigated for sensor optimization. It was found that there was a significant difference between the patterned and non-patterned samples. The patterned sensors were found to have a lower range of resistance than the non-patterned sensors and a smaller average standard of deviation between measurements. The 7 tension, lower linear yarn density, elastic patterned sample was the only sample to not exhibit hysteresis after three trials as well as have a linear range from 11.5cm to 13cm where the sensor behaves in accordance with a linear transfer function.
ContributorsBrown, Shannon (Co-author) / Irimata, Lisa (Co-author) / LaBelle, Jeffrey (Thesis director) / Hanson, Erika (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
135820-Thumbnail Image.png
Description
This paper proposes a new framework design for the lightweight transradial prosthesis. This device was designed to be light-weight, easily manufactured, inexpensive, and to have a high interstitial free space volume for electrical components and customization. Press-fit junctions between fins allow for little or no adhesives, allowing for easily replaceable

This paper proposes a new framework design for the lightweight transradial prosthesis. This device was designed to be light-weight, easily manufactured, inexpensive, and to have a high interstitial free space volume for electrical components and customization. Press-fit junctions between fins allow for little or no adhesives, allowing for easily replaceable parts. Designs were constructed out of chipboard and run through an assortment of tests to see if each design iterations met structural design specifications. There were four main design iterations tested: 4, 8, 12 fin designs, and a 4 fin design with additional angled fins for torsional support (4T). Compression, torsion, and 3-point bending tests were all performed on each cylindrical iteration. Basic tensile and material testing was done on chipboard to support results. The force applied to a human arm during a fall is approximately 500 lbf [13]. Compression tests yielded a strength of approximately 300 lbf for the cylindrical designs. ANOVAs and T-tests were performed to find significance in compressive strength between the design iterations with the varied number of fins (p<<0.05). The torsional strength of the human arm, without causing great strain or discomfort has a max value of approximately 15 Nm [14]. This matched the torsional values of the 4T. design [14]. The 4, 8, and 12 designs' torsional strengths were linear with values of approximately 4, 7, and 12 Nm respectively. The 3-point bending test yielded the flexural stress and strain values to find compressive strength in the convex direction as well as the displacement and deformation in each sample. The material chipboard was found to be variable with elastic modulus, Poisson's ratio, and tensile strength. Each experimental procedure was done as a proof of concept for future prosthesis design.
ContributorsMcbryan, Sarah Jane (Author) / LaBelle, Jeffrey (Thesis director) / Lathers, Steven (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05