Matching Items (18)
Filtering by

Clear all filters

131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133882-Thumbnail Image.png
Description
Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the

Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the outcome of the crisis leads the student to commit to becoming an engineer. During the crisis phase, students are offered a multitude of experiences to shape their values and choices to influence commitment to becoming an engineering student. Student's identities in engineering are fostered through mentoring from industry, alumni, and peer coaching [3], [4]; experiences that emphasize awareness of the importance of professional interactions [5]; and experiences that show creativity, collaboration, and communication as crucial components to engineering. Further strategies to increase students' persistence include support in their transition to becoming an engineering student, education about professional engineers and the workplace [6], and engagement in engineering activities beyond the classroom. Though these strategies are applied to all students, there are challenges students face in confronting their current identity and beliefs before they can understand their value to society and achieve personal satisfaction. To understand student's progression in developing their engineering identity, first year engineering students were surveyed at the beginning and end of their first semester. Students were asked to rate their level of agreement with 22 statements about their engineering experience. Data included 840 cases. Items with factor loading less than 0.6 suggesting no sufficient explanation were removed in successive factor analysis to identify the four factors. Factor analysis indicated that 60.69% of the total variance was explained by the successive factors. Survey questions were categorized into three factors: engineering identity as defined by sense of belonging and self-efficacy, doubts about becoming an engineer, and exploring engineering. Statements in exploring engineering indicated student awareness, interest and enjoyment within engineering. Students were asked to think about whether they spent time learning what engineers do and participating in engineering activities. Statements about doubts about engineering to engineering indicated whether students had formed opinions about their engineering experience and had understanding about their environment. Engineering identity required thought in belonging and self-efficacy. Belonging statements called for thought about one's opinion in the importance of being an engineer, the meaning of engineering, an attachment to engineering, and self-identification as an engineer. Statements about self-efficacy required students to contemplate their personal judgement of whether they would be able to succeed and their ability to become an engineer. Effort in engineering indicated student willingness to invest time and effort and their choices and effort in their engineering discipline.
ContributorsNguyen, Amanda (Author) / Ganesh, Tirupalavanam (Thesis director) / Robinson, Carrie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133927-Thumbnail Image.png
Description
This project examines the contributions of environmental effects and role models to the overall sense of belonging and interest in science, technology, engineering, and mathematics (STEM) fields among women. Eleven female engineers, ranging from college freshmen, seniors, and industry members, were interviewed for their perspectives on how their childhoods, female

This project examines the contributions of environmental effects and role models to the overall sense of belonging and interest in science, technology, engineering, and mathematics (STEM) fields among women. Eleven female engineers, ranging from college freshmen, seniors, and industry members, were interviewed for their perspectives on how their childhoods, female engineers in media, and STEM outreach affiliations affected their career decisions to pursue engineering. Additionally, a student survey was sent to the general Arizona State University population to gauge interest in different engineering challenges. Major, gender, and first-generation status emerged as affecting factors for high interest in certain engineering challenges. As denoted by the survey, male students showed more interest in "Joy of Living" related challenges, while females were more interested in "Health" and "Sustainability" related challenges. First-generation students showed more neutral attitudes than continuing-generation towards most of the engineering challenges. Interview vignettes and survey results were analyzed to identify implications for K-12 outreach and education efforts.
ContributorsHuber, Erin Grace Ni (Author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134416-Thumbnail Image.png
Description
Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems

Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems in engineering, such as the dominance of white males in the field and the amount of education needed to become a successful engineer [4]. Therefore, the NAE encourages that the current engineering community begin to expose the younger generations to the real foundation of engineering: problem-solving [4]. The objective of this thesis is to minimize the knowledge gap by assessing the current perception of engineering amongst middle school and high school students and improving it through engaging and interactive presentations and activities that build upon the students’ problem-solving abilities.

The project was aimed towards middle school and high school students, as this is the estimated level where they learn biology and chemistry—key subject material in biomedical engineering. The high school students were given presentations and activities related to biomedical engineering. Additionally, within classrooms, posters were presented to middle school students. The content of the posters were students of the biomedical engineering program at ASU, coming from different ethnic backgrounds to try and evoke within the middle school students a sense of their own identity as a biomedical engineer. To evaluate the impact these materials had on the students, a survey was distributed before the students’ exposure to the materials and after that assesses the students’ understanding of engineering at two different time points. A statistical analysis was conducted with Microsoft Excel to assess the influence of the activity and/or presentation on the students’ understanding of engineering.
ContributorsLlave, Alison Rose (Author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134423-Thumbnail Image.png
Description
The purpose of this study was to utilize quantitative results gained through surveys to determine the effect of hands-on engineering activities and a poster study on improving understanding and awareness of engineering disciplines in high school students. There was a focus on increasing participation of women and minorities in engineering

The purpose of this study was to utilize quantitative results gained through surveys to determine the effect of hands-on engineering activities and a poster study on improving understanding and awareness of engineering disciplines in high school students. There was a focus on increasing participation of women and minorities in engineering to improve diversity, and this study utilized biomedical engineering as a means of achieving these goals. The analysis of this thesis focused on the results of the pre-assessment and post-assessment taken by a group of high school students before and after a program using presentations in combination with engineering activities tackling real-world problems. These assessments objectively ranked both the awareness and interest level in various engineering activities across a number of disciplines. The results were analyzed using percentages of the engineering statements that the students recognized as engineering and were interested in, as well as using t-tests. Statistical significance was found for the percentage of statements that the students expressed the highest interest level in between the initial and final survey. The other factors analyzed did not produce statistical significance, but the increase in interest level does meet one of the primary goals of the project. Since the percentages of all the positive factors did increase between the pre- and post- assessment, the study can be considered a success overall; more data is simply needed to indicate significance in these other factors. Future studies will focus on implementing this program as an after-school activity that can be led by members of the engineering community at ASU.
ContributorsLum, Kenna (Co-author) / Marshall, Dirk (Co-author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134431-Thumbnail Image.png
Description
The objective of this research study is to assess the effectiveness of a poster-based messaging campaign and engineering-based activities for middle school and high school students to encourage students to explore and to pursue chemical engineering. Additionally, presentations are incorporated into both methods to provide context and improve understanding of

The objective of this research study is to assess the effectiveness of a poster-based messaging campaign and engineering-based activities for middle school and high school students to encourage students to explore and to pursue chemical engineering. Additionally, presentations are incorporated into both methods to provide context and improve understanding of the presented poster material or activity. Pre-assessments and post-assessments are the quantitative method of measuring effectiveness. For the poster campaign, ASU juniors and seniors participated in the poster campaign by producing socially relevant messages about their research or aspirations to address relevant chemical engineering problems. For the engineering-based activity, high school students participated in an Ira A. Fulton Schools of Engineering program "Young Engineers Shape the World" in which the students participated in six-hour event learning about four engineering disciplines, and the chemical engineering presentation and activity was conducted in one of the sessions. Pre-assessments were given at the beginning of the event, and the post-assessments were provided towards the end of the event. This honors thesis project will analyze the collected data.
ContributorsBueno, Daniel Tolentino (Author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Chemical Engineering Program (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133484-Thumbnail Image.png
Description
In modern society, computer science (CS) professionals are necessary in the workforce. A growing number of fields and disciplines require the analytical and programming skills that come from a CS education. Despite the growing demand for programmers, the dropout rate within undergraduate CS programs remains high. In an effort to

In modern society, computer science (CS) professionals are necessary in the workforce. A growing number of fields and disciplines require the analytical and programming skills that come from a CS education. Despite the growing demand for programmers, the dropout rate within undergraduate CS programs remains high. In an effort to improve retention and make CS more accessible, I prototyped a mobile application that will help students through the principal deterrents that students face in their undergraduate years. Utilizing survey responses from 51 peers I determined the core courses and concepts within the CS curriculum that provoked the most concern to select the topics covered in the mobile application. The results show that the major barrier courses are CSE 310: Data Structures and Algorithms, CSE 340: Principles of Programming Languages, and CSE 355: Introduction to Theoretical Computer Science. Also using interviews and market research, I went through an iterative design process until I arrived at my final prototype that provides users a visual timeline of their program, examples for each individual topic, the ability to interact with other users, and create quizzes covering content they learned. This prototype is intended to lead to a fully developed application that will prepare and encourage students to further their professional careers in CS.
ContributorsRoldan, Jorge (Author) / Ganesh, Tirupalavanam (Thesis director) / Trowbridge, Amy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134360-Thumbnail Image.png
Description
The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE).

The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE). This research report presents an analysis of the effects of making engineering education socially relevant, interesting and accessible. High school students participated in a learning experience in which they designed flood evacuation systems that could warn a city of incoming floods. Both pre-assessments and post-assessments were implemented to capture students' awareness of engineering tasks and their interest levels in engineering tasks. Data on students' perceptions of specific engineering tasks were analyzed quantitatively through Wilcoxon signed-rank testing and determined that the program had significant positive effects on developing more accurate conceptions of engineering tasks. The results relating to student interest in CSE indicated that there was an increased level of interest in CSE engineering tasks after the program. There was a 14% increase in number of students who found engineering tasks interesting from 64% to 78%. However, as participants self-selected to participate in this learning experience, many students had positive perceptions of engineering tasks prior to engaging in the learning experience. This study was successful and met both of its primary goals of enhancing awareness and interest in engineering in this particular group of high school students.
ContributorsRidhwaan, Syed (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134070-Thumbnail Image.png
Description
This research was intended to investigate the effects of various motivational variables on high school students' declaration of a STEM major in college, focusing on PSEM majors. It made use of data from the High School Longitudinal Study of 2009, including the first and second follow-up years (2011 and 2013).

This research was intended to investigate the effects of various motivational variables on high school students' declaration of a STEM major in college, focusing on PSEM majors. It made use of data from the High School Longitudinal Study of 2009, including the first and second follow-up years (2011 and 2013). The advantage of this study over others is due to this data set, which was designed to be a representative sample of the national population of US high school students. Effects of motivational factors were considered in the context of demographic groups, with the analysis conducted on PSEM declaration illuminating a problem in the discrepancy between male and female high school students. In general, however, PSEM retention from intention to declaration is abysmal, with only 35% of those students who intended towards PSEM actually enrolling.
ContributorsMangu, Daniel Matei (Author) / Middleton, James (Thesis director) / Ganesh, Tirupalavanam (Committee member) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133012-Thumbnail Image.png
Description
As a member of the National Academy of Engineering’s Grand Challenge Scholars Program (GCSP) and the new Next Generation Service Corps (NGSC), I began this project interested in investigating the benefits and outcomes of these programs on my development throughout my undergraduate experience. Since interdisciplinarity is a core component of

As a member of the National Academy of Engineering’s Grand Challenge Scholars Program (GCSP) and the new Next Generation Service Corps (NGSC), I began this project interested in investigating the benefits and outcomes of these programs on my development throughout my undergraduate experience. Since interdisciplinarity is a core component of both programs, my thesis focused on the development and analysis of a survey to measure the interdisciplinary competence of undergraduate students in various programs and majors throughout ASU. In order to develop the survey items, we adapted questions by Lattuca, et al, which only analyzed the interdisciplinary competence of engineering students. Based on our responses, the quantitative data surfaced some interesting discrepancies between students in engineering and non-engineering majors. Broadly, the data also showed that students in GCSP and NGSC have higher interdisciplinary competence, implying there may be some benefits to both. Additionally, a preliminary theme analysis of the qualitative data seems to demonstrate that students appreciate a wide variety of opportunities to be exposed to disciplines outside of their primary major, and programs such as GCSP and NGSC which highlight interdisciplinarity expose students to opportunities they otherwise wouldn’t have known about. In the future, I would recommend evaluating the impact of students’ motivations for joining each program and examining the possible implications on their interdisciplinary competence. There are other outcomes that weren’t examined as part of this study, so it may also be interesting for future researchers to investigate other components of each program like the impacts of service learning or entrepreneurial experiences.
ContributorsChen, Diana Karen (Author) / Ganesh, Tirupalavanam (Thesis director) / Trowbridge, Amy (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05