Matching Items (28)

137139-Thumbnail Image.png

Analysis of Inhibition of Influenza Replication via Synthetic Antibodies

Description

The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center

The influenza virus, also known as "the flu", is an infectious disease that has constantly affected the health of humanity. There is currently no known cure for Influenza. The Center for Innovations in Medicine at the Biodesign Institute located on campus at Arizona State University has been developing synbodies as a possible Influenza therapeutic. Specifically, at CIM, we have attempted to design these initial synbodies to target the entire Influenza virus and preliminary data leads us to believe that these synbodies target Nucleoprotein (NP). Given that the synbody targets NP, the penetration of cells via synbody should also occur. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. The focus of my honors thesis is to explore how synthetic antibodies can potentially inhibit replication of the Influenza (H1N1) A/Puerto Rico/8/34 strain so that a therapeutic can be developed. A high affinity synbody for Influenza can be utilized to test for inhibition of Influenza as shown by preliminary data. The 5-5-3819 synthetic antibody's internalization in live cells was visualized with Madin-Darby Kidney Cells under a Confocal Microscope. Then by Western Blot analysis we evaluated for the diminution of NP level in treated cells versus untreated cells. Expression of NP over 8 hours time was analyzed via Western Blot Analysis, which showed NP accumulation was retarded in synbody treated cells. The data obtained from my honors thesis and preliminary data provided suggest that the synthetic antibody penetrates live cells and targets NP. The results of my thesis presents valuable information that can be utilized by other researchers so that future experiments can be performed, eventually leading to the creation of a more effective therapeutic for influenza.

Contributors

Agent

Created

Date Created
  • 2014-05

135762-Thumbnail Image.png

Use of the Multiple Myeloma Immunosignature for the Synthesis of Synbody Therapeutic Treatment

Description

Currently, treatment for multiple myeloma (MM), a hematological cancer, is limited to post-symptomatic chemotherapy combined with other pharmaceuticals and steroids. Even so, the immuno-depressing cancer can continue to proliferate, leading

Currently, treatment for multiple myeloma (MM), a hematological cancer, is limited to post-symptomatic chemotherapy combined with other pharmaceuticals and steroids. Even so, the immuno-depressing cancer can continue to proliferate, leading to a median survival period of two to five years. B cells in the bone marrow are responsible for generating antigen-specific antibodies, but in MM the B cells express mutated, non-specific monoclonal antibodies. Therefore, it is hypothesized that antibody-based assay and therapy may be feasible for detecting and treating the disease. In this project, 330k peptide microarrays were used to ascertain the binding affinity of sera antibodies for MM patients with random sequence peptides; these results were then contrasted with normal donor assays to determine the "immunosignatures" for MM. From this data, high-binding peptides with target-specificity (high fluorescent intensity for one patient, low in all other patients and normal donors) were selected for two MM patients. These peptides were narrowed down to two lists of five (10 total peptides) to analyze in a synthetic antibody study. The rationale behind this originates from the idea that antibodies present specific binding sites on either of their branches, thus relating high binding peptides from the arrays to potential binding targets of the monoclonal antibodies. Furthermore, these peptides may be synthesized on a synthetic antibody scaffold with the potential to induce targeted delivery of radioactive or chemotherapeutic molecular tags to only myelomic B cells. If successful, this would provide a novel alternative to current treatments that is less invasive, has fewer side effects, more specifically targets the cause of MM, and reliably diagnoses the cancer in the presymptomatic stage.

Contributors

Agent

Created

Date Created
  • 2016-05

135873-Thumbnail Image.png

Analysis for antitumor antibody signatures in lung cancer using two different random peptide libraries

Description

Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a

Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from late tumor detection and expensive treatment options. Early detection using inexpensive techniques may relieve much of the burden throughout the world, not just in more developed countries. I examined the immune responses of lung cancer patients using immunosignatures – patterns of reactivity between host serum antibodies and random peptides. Immunosignatures reveal disease-specific patterns that are very reproducible. Immunosignaturing is a chip-based method that has the ability to display the antibody diversity from individual sera sample with low cost. Immunosignaturing is a medical diagnostic test that has many applications in current medical research and in diagnosis. From a previous clinical study, patients diagnosed for lung cancer were tested for their immunosignature vs. healthy non-cancer volunteers. The pattern of reactivity against the random peptides (the ‘immunosignature’) revealed common signals in cancer patients, absent from healthy controls. My study involved the search for common amino acid motifs in the cancer-specific peptides. My search through the hundreds of ‘hits’ revealed certain motifs that were repeated more times than expected by random chance. The amino acids that were the most conserved in each set include tryptophan, aspartic acid, glutamic acid, proline, alanine, serine, and lysine. The most overall conserved amino acid observed between each set was D - aspartic acid. The motifs were short (no more than 5-6 amino acids in a row), but the total number of motifs I identified was large enough to assure significance. I utilized Excel to organize the large peptide sequence libraries, then CLUSTALW to cluster similar-sequence peptides, then GLAM2 to find common themes in groups of peptides. In so doing, I found sequences that were also present in translated cancer expression libraries (RNA) that matched my motifs, suggesting that immunosignatures can find cancer-specific antigens that can be both diagnostic and potentially therapeutic.

Contributors

Agent

Created

Date Created
  • 2015-12

134658-Thumbnail Image.png

Using Technological Models to Decrease Medical/Scientific Costs

Description

Both technological and scientific fields continue to revolutionize in a similar fashion; however, a major difference is that high-tech corporations have found models to continue progressions while still keeping product

Both technological and scientific fields continue to revolutionize in a similar fashion; however, a major difference is that high-tech corporations have found models to continue progressions while still keeping product costs low. The main objective was to identify which, if any, components of certain technological models could be used with the vaccine and pharmaceutical markets to significantly lower their costs. Smartphones and computers were the two main items investigated while the two main items from the scientific standpoint were vaccines and pharmaceuticals. One concept had the ability to conceivably decrease the costs of vaccines and drugs and that was "market competition". If the United States were able to allow competition within the vaccine and drug companies, it would allow for the product prices to be best affected. It would only take a few small companies to generate generic versions of the drugs and decrease the prices. It would force the larger competition to most likely decrease their prices. Furthermore, the PC companies use a cumulative density function (CDF) to effectively divide their price setting in each product cycle. It was predicted that if this CDF model were applied to the vaccine and drug markets, the prices would no longer have to be extreme. The corporations would be able to set the highest price for the wealthiest consumers and then slowly begin to decrease the costs for the middle and lower class. Unfortunately, the problem within the vaccine and pharmaceutical markets was not the lack of innovation or business models. The problem lied with their liberty to choose product costs due to poor U.S. government regulations.

Contributors

Agent

Created

Date Created
  • 2016-12

134743-Thumbnail Image.png

Development and In Depth Characterization of High Affinity Ligands for the Ebola Virus

Description

The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that

The devastating 2014 Ebola virus outbreak in Western Africa demonstrated the lack of therapeutic approaches available for the virus. Although monoclonal antibodies (mAb) and other molecules have been developed that bind the virus, no therapeutic has shown the efficacy needed for FDA approval. Here, a library of 50 peptide based ligands that bind the glycoprotein of the Zaire Ebola virus (GP) were developed. Using whole virus screening of vesicular stomatitis virus pseudotyped with GP, low affinity peptides were identified for ligand construction. In depth analysis showed that two of the peptide based molecules bound the Zaire GP with <100 nM KD. One of these two ligands was blocked by a known neutralizing mAb, 2G4, and showed cross-reactivity to the Sudan GP. This work presents ligands with promise for therapeutic applications across multiple variants of the Ebola virus.

Contributors

Agent

Created

Date Created
  • 2016-12

134876-Thumbnail Image.png

Development of Synbody Peptides for PD-L1 Blockade for use as a Cancer Vaccine Adjuvant

Description

PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages

PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place of antibodies can be tested. Synbodies offer a variety of advantages, including shorter half-life, smaller size, and cheaper cost. Peptides that could bind PD-L1 were identified via peptide arrays and used to construct synbodies. These synbodies were tested with inhibition ELISA assays, SPR, and pull down assays. Additional flow cytometry analysis was done to determine the binding specificity of the synbodies to PD-L1 and the ability of those synbodies to inhibit the PD-L1/PD-1 interaction. Although analysis of permeabilized cells expressing PD-L1 indicated that the synbodies could successfully bind PD-L1, those results were not replicated in non-permeabilized cells. Further assays suggested that the binding of the synbodies was non-specific. Other tests were done to see if the synbodies could inhibit the PD-1/PD-L1 interaction. This assay did not yield any conclusive results and further experimentation is needed to determine the efficacy of the synbodies in inhibiting this interaction.

Contributors

Agent

Created

Date Created
  • 2016-12

127967-Thumbnail Image.png

Adjuvant-Mediated Epitope Specificity and Enhanced Neutralizing Activity of Antibodies Targeting Dengue Virus Envelope Protein

Description

The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of

The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB) in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV) envelope glycoprotein domain III (EDIII), which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.

Contributors

Created

Date Created
  • 2017-09-25

128194-Thumbnail Image.png

Scalable high-density peptide arrays for comprehensive health monitoring

Description

There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies

There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed microarrays are not scalable. Here we demonstrate a platform based on fabricating microarrays (~10 M peptides per slide, 330,000 peptides per assay) on silicon wafers using equipment common to semiconductor manufacturing. The potential of these microarrays for comprehensive health monitoring is verified through the simultaneous detection and classification of six different infectious diseases and six different cancers. Besides diagnostics, these high-density peptide chips have numerous other applications both in health care and elsewhere.

Contributors

Agent

Created

Date Created
  • 2014-09-03

128580-Thumbnail Image.png

Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy

Description

Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months.

Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

Contributors

Agent

Created

Date Created
  • 2016-11-16

128958-Thumbnail Image.png

Statistical methods for analyzing immunosignatures

Description

Background
Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and fundamentally different research

Background
Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and fundamentally different research questions. In addition to classifying samples based on disease status, the complex patterns and latent factors underlying immunosignatures, which we attempt to model, may have a diverse range of applications.
Methods
We investigate the utility of a number of statistical methods to determine model performance and address challenges inherent in analyzing immunosignatures. Some of these methods include exploratory and confirmatory factor analyses, classical significance testing, structural equation and mixture modeling.
Results
We demonstrate an ability to classify samples based on disease status and show that immunosignaturing is a very promising technology for screening and presymptomatic screening of disease. In addition, we are able to model complex patterns and latent factors underlying immunosignatures. These latent factors may serve as biomarkers for disease and may play a key role in a bioinformatic method for antibody discovery.
Conclusion
Based on this research, we lay out an analytic framework illustrating how immunosignatures may be useful as a general method for screening and presymptomatic screening of disease as well as antibody discovery.

Contributors

Agent

Created

Date Created
  • 2011-08-19