Matching Items (37)

Filtering by

Clear all filters

Environmental Life Cycle Assessment of San Francisco Bay Area Muni Light Rail and Rapid Transit with Wholesale and Renewable Electricity

Description

Results are available here

The environmental life cycle assessment of electric rail public transit modes requires an assessment of electricity generation mixes. The provision of electricity to a region does not usually adhere to geopolitical boundaries. Electricity is

Results are available here

The environmental life cycle assessment of electric rail public transit modes requires an assessment of electricity generation mixes. The provision of electricity to a region does not usually adhere to geopolitical boundaries. Electricity is governed based on lowest cost marginal dispatch and reliability principles. Additionally, there are times when a public transit agency may purchase wholesale electricity from a particular service provider. Such is the case with electric rail modes in the San Francisco Bay Area.

An environmental life cycle assessment of San Francisco Bay Area public transit systems was developed by Chester and Horvath (2009) and includes vehicle manufacturing/maintenance, infrastructure construction/operation/maintenance, energy production, and supply chains, in addition to vehicle propulsion. For electric rail modes, vehicle propulsion was based on an average electricity mix for the region. Since 2009, new electricity contract information and renewable electricity goals have been established. As such, updated life cycle results should be produced.

Using recent wholesale electricity mix and renewable electricity goal data from the transit agencies, updated electricity precombustion, generation, transmission, and distribution environmental impacts of vehicle propulsion are estimated. In summary, SFMTA Muni light rail is currently purchasing 100% hydro electricity from the Hetch Hetchy region of California and the Bay Area Rapid Transit (BART) system is purchasing 22% natural gas, 9% coal, 2% nuclear, 66% hydro, and 1% other renewables from the Pacific Northwest . Furthermore, the BART system has set a goal of 20% renewables by 2016. Using the GREET1 2012 electricity pathway, a life cycle assessment of wholesale and renewable electricity generation for these systems is calculated.

Chester and Horvath (2009)

Contributors

Metropolitan-Scale Building Infrastructure Environmental Life Cycle Assessment: Los Angeles’ Embedded Impacts

Description

Building energy assessment often focuses on the use of electricity and natural gas during the use phase of a structure while ignoring the energy investments necessary to construct the facility. This research develops a methodology for quantifying the “embedded” energy

Building energy assessment often focuses on the use of electricity and natural gas during the use phase of a structure while ignoring the energy investments necessary to construct the facility. This research develops a methodology for quantifying the “embedded” energy and greenhouse gases (GHG) in the building infrastructure of an entire metropolitan region. “Embedded” energy and GHGs refer to the energy necessary to manufacture materials and construct the infrastructure. Using these methods, a case study is developed for Los Angeles County.

Contributors

142-Thumbnail Image.png

Assessing the Potential for Reducing Life-Cycle Environmental Impacts through Transit Oriented Development Infill along Existing Light Rail in Phoenix

Description

Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill

Study Background: Researchers at ASU have determined that significant energy and environmental benefits are possible in the Phoenix metro area over the next 60 years from transit-oriented development along the current Valley Metro light rail line. The team evaluated infill densification outcomes when vacant lots and some dedicated surface parking lots are repurposed for residential development. Life cycle building (construction, use, and energy production) and transportation (manufacturing, operation, and energy production) changes were included and energy use and greenhouse gas emissions were evaluated in addition to the potential for respiratory impacts and smog formation. All light rail infill scenarios are compared against new single family home construction in outlying areas.

Overview of Results: In the most conservative scenario, the Phoenix area can place 2,200 homes near light rail and achieve 9-15% reductions in energy use and emissions. By allowing multi-family apartments to fill vacant lots, 12,000 new dwelling units can be infilled achieving a 28-42% reduction. When surface lots are developed in addition to vacant lots then multi-family apartment buildings around light rail can deliver 30-46% energy and environmental reductions. These reductions occur even after new trains are put into operation to meet the increased demand.

Contributors

Created

Date Created
2013

Methodology for the Environmental Life-Cycle Assessment of Los Angeles Metro’s Orange Bus Rapid Transit and Gold Light Rail Transit Lines

Description

The goal of this working paper is to provide the methodological background for several upcoming reports and peer-reviewed journal publications. This manuscript only provides background methodology and does not show or interpret any of the results that are being generated

The goal of this working paper is to provide the methodological background for several upcoming reports and peer-reviewed journal publications. This manuscript only provides background methodology and does not show or interpret any of the results that are being generated by the research team. The methodology is consistent with the transportation LCA approach developed by the author in previous research. The discussion in this working paper provides the detailed background data and steps used by the research team for their assessment of Los Angeles Metro transit lines and a competing automobile trip.

Contributors

Created

Date Created
2012-07-30

Environmental Life-Cycle Assessment of Los Angeles Metro’s Orange Bus Rapid Transit and Gold Light Rail Transit Lines

Description

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to

Public transit systems are often accepted as energy and environmental improvements to automobile travel, however, few life cycle assessments exist to understand the effects of implementation of transit policy decisions. To better inform decision-makers, this project evaluates the decision to construct and operate public transportation systems and the expected energy and environmental benefits over continued automobile use. The public transit systems are selected based on screening criteria. Initial screening included advanced implementation (5 to 10 years so change in ridership could be observed), similar geographic regions to ensure consistency of analysis parameters, common transit agencies or authorities to ensure a consistent management culture, and modes reflecting large infrastructure investments to provide an opportunity for robust life cycle assessment of large impact components. An in-depth screening process including consideration of data availability, project age, energy consumption, infrastructure information, access and egress information, and socio-demographic characteristics was used as the second filter. The results of this selection process led to Los Angeles Metro’s Orange and Gold lines.

In this study, the life cycle assessment framework is used to evaluate energy inputs and emissions of greenhouse gases, particulate matter (10 and 2.5 microns), sulfur dioxide, nitrogen oxides, volatile organic compounds, and carbon monoxide. For the Orange line, Gold line, and competing automobile trip, an analysis system boundary that includes vehicle, infrastructure, and energy production components is specified. Life cycle energy use and emissions inventories are developed for each mode considering direct (vehicle operation), ancillary (non-vehicle operation including vehicle maintenance, infrastructure construction, infrastructure operation, etc.), and supply chain processes and services. In addition to greenhouse gas emissions, the inventories are linked to their potential for respiratory impacts and smog formation, and the time it takes to payback in the lifetime of each transit system.

Results show that for energy use and greenhouse gas emissions, the inclusion of life cycle components increases the footprint between 42% and 91% from vehicle propulsion exclusively. Conventional air emissions show much more dramatic increases highlighting the effectiveness of “tailpipe” environmental policy. Within the life cycle, vehicle operation is often small compared to other components. Particulate matter emissions increase between 270% and 5400%. Sulfur dioxide emissions increase by several orders of magnitude for the on road modes due to electricity use throughout the life cycle. NOx emissions increase between 31% and 760% due to supply chain truck and rail transport. VOC emissions increase due to infrastructure material production and placement by 420% and 1500%. CO emissions increase by between 20% and 320%. The dominating contributions from life cycle components show that the decision to build an infrastructure and operate a transportation mode in Los Angeles has impacts far outside of the city and region. Life cycle results are initially compared at each system’s average occupancy and a breakeven analysis is performed to compare the range at which modes are energy and environmentally competitive.

The results show that including a broad suite of energy and environmental indicators produces potential tradeoffs that are critical to decision makers. While the Orange and Gold line require less energy and produce fewer greenhouse gas emissions per passenger mile traveled than the automobile, this ordering is not necessarily the case for the conventional air emissions. It is possible that a policy that focuses on one pollutant may increase another, highlighting the need for a broad set of indicators and life cycle thinking when making transportation infrastructure decisions.

Contributors

Policy Brief: Infrastructure and Automobile Shifts: Positioning Transit to Reduce Life-Cycle Environmental Impacts for Urban Sustainability Goals

Description

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus

Public transportation systems are often part of strategies to reduce urban environmental impacts from passenger transportation, yet comprehensive energy and environmental life-cycle measures, including upfront infrastructure effects and indirect and supply chain processes, are rarely considered. Using the new bus rapid transit and light rail lines in Los Angeles, near-term and long-term life-cycle impact assessments are developed, including consideration of reduced automobile travel. Energy consumption and emissions of greenhouse gases and criteria pollutants are assessed, as well the potential for smog and respiratory impacts.

Results show that life-cycle infrastructure, vehicle, and energy production components significantly increase the footprint of each mode (by 48–100% for energy and greenhouse gases, and up to 6200% for environmental impacts), and emerging technologies and renewable electricity standards will significantly reduce impacts. Life-cycle results are identified as either local (in Los Angeles) or remote, and show how the decision to build and operate a transit system in a city produces environmental impacts far outside of geopolitical boundaries. Ensuring shifts of between 20–30% of transit riders from automobiles will result in passenger transportation greenhouse gas reductions for the city, and the larger the shift, the quicker the payback, which should be considered for time-specific environmental goals.

Contributors

Policy Brief: Developing Safer Alternatives to Conventional Plastics and Supporting the Use of Reusable Products Can Reduce Harm to Health and the Environment

Description

Researchers at ASU have identified opportunities to reduce risk to human health and the environment by changing the composition and disposal practices of polymers. Although plastics have benefited society in innumerable ways, the resulting omnipresence of plastics in society has

Researchers at ASU have identified opportunities to reduce risk to human health and the environment by changing the composition and disposal practices of polymers. Although plastics have benefited society in innumerable ways, the resulting omnipresence of plastics in society has led to concerns about the hazards of constant, low-level exposure and the search for options for sustainable disposal.

The team used examples from public health and medicine-sectors that have particularly benefited from polymer applications, to highlight the benefits of using plastics in certain applications and to pinpoint opportunities for reducing risks from all plastics’ uses. These include phasing out polymers that contain components associated with negative health effects, diminishing the need to dispose of large quantities of plastic through reduction and reuse, and promoting and developing less harmful alternatives to conventional plastics.

For additional discussion please see the publication Plastics and Environmental Health: the Road Ahead available online here.

Contributors

130468-Thumbnail Image.png

Comparison of Life Cycle Assessment Course Content in the U.S.

Description

Syllabi from 16 Life Cycle Assessment courses across 14 U.S. universities were examined for content, structure, and opportunity for coordinated efforts into the future.

Contributors

Agent

Created

Date Created
2018-05-14

Human and Organizational Factors that Contributed to the US-Canadian August 2003 Electricity Grid Blackout

Description

The US-Canadian electricity grid is a network of providers and users that operate almost completely independently of one another. In August of 2003, First Energy’s (FE) Harding-Chamberlain transmission line near Akron, Ohio went offline starting a series of cascading failures

The US-Canadian electricity grid is a network of providers and users that operate almost completely independently of one another. In August of 2003, First Energy’s (FE) Harding-Chamberlain transmission line near Akron, Ohio went offline starting a series of cascading failures that eventually led to 8 US states and 1 Canadian province totaling nearly 50 million people without power. The failure of transmission lines are common occurrences relating to the inability to exactly predict the electricity demand at any time (as will be discussed later in this document). The inability to properly monitor and react across multiple organizations to the downed line was the true failure that led to the blackout. This outage not only left homes and businesses without power but paralyzed critical public services such as transportation networks and hospitals. The estimated cost of the outage is between 4 and 6 billion US dollars.

Contributors

Future Electricity Supply Vulnerability and Climate Change: A Case Study of Maricopa and Los Angeles Counties

Description

Climatic changes have the potential to impact electricity generation in the U.S. Southwest and methods are needed for estimating how cities will be impacted. This study builds an electricity vulnerability risk index for two Southwest cities (Phoenix and Los Angeles)

Climatic changes have the potential to impact electricity generation in the U.S. Southwest and methods are needed for estimating how cities will be impacted. This study builds an electricity vulnerability risk index for two Southwest cities (Phoenix and Los Angeles) based on climate-related changes in electricity generation capacity. Planning reserve margins (PRM) are used to estimate the potential for blackouts and brownouts under future climate scenarios. Reductions in PRM occur in both cities in 2016 with the most significant reductions occurring in regions relying more heavily on hydropower.

Contributors