Matching Items (4)
156993-Thumbnail Image.png
Description
Nanoporous materials, with pore sizes less than one nanometer, have been incorporated as filler materials into state-of-the-art polyamide-based thin-film composite membranes to create thin-film nanocomposite (TFN) membranes for reverse osmosis (RO) desalination. However, these TFN membranes have inconsistent changes in desalination performance as a result of filler incorporation. The

Nanoporous materials, with pore sizes less than one nanometer, have been incorporated as filler materials into state-of-the-art polyamide-based thin-film composite membranes to create thin-film nanocomposite (TFN) membranes for reverse osmosis (RO) desalination. However, these TFN membranes have inconsistent changes in desalination performance as a result of filler incorporation. The nano-sized filler’s transport role for enhancing water permeability is unknown: specifically, there is debate around the individual transport contributions of the polymer, nanoporous particle, and polymer/particle interface. Limited studies exist on the pressure-driven water transport mechanism through nanoporous single-crystal nanoparticles. An understanding of the nanoporous particles water transport role in TFN membranes will provide a better physical insight on the improvement of desalination membranes.

This dissertation investigates water permeation through single-crystal molecular sieve zeolite A particles in TFN membranes in four steps. First, the meta-analysis of nanoporous materials (e.g., zeolites, MOFs, and graphene-based materials) in TFN membranes demonstrated non-uniform water-salt permselectivity performance changes with nanoporous fillers. Second, a systematic study was performed investigating different sizes of non-porous (pore-closed) and nanoporous (pore-opened) zeolite particles incorporated into conventionally polymerized TFN membranes; however, the challenges of particle aggregation, non-uniform particle dispersion, and possible particle leaching from the membranes limit analysis. Third, to limit aggregation and improve dispersion on the membrane, a TFN-model membrane synthesis recipe was developed that immobilized the nanoparticles onto the support membranes surface before the polymerization reaction. Fourth, to quantify the possible water transport pathways in these membranes, two different resistance models were employed.

The experimental results show that both TFN and TFN-model membranes with pore-opened particles have higher water permeance compared to those with pore-closed particles. Further analysis using the resistance in parallel and hybrid models yields that water permeability through the zeolite pores is smaller than that of the particle/polymer interface and higher than the water permeability of the pure polymer. Thus, nanoporous particles increase water permeability in TFN membranes primarily through increased water transport at particle/polymer interface. Because solute rejection is not significantly altered in our TFN and TFN-model systems, the results reveal that local changes in the polymer region at the polymer/particle interface yield high water permeability.
ContributorsCay Durgun, Pinar (Author) / Lind, Mary Laura (Thesis advisor) / Lin, Jerry Y. S. (Committee member) / Green, Matthew D. (Committee member) / Seo, Dong K. (Committee member) / Tongay, Sefaattin (Committee member) / Arizona State University (Publisher)
Created2018
134518-Thumbnail Image.png
Description
This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and

This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and bore fluid to the spinneret. Based on apparatus runs performed with Polysulfone (PSF) dopes dissolved in N,N-Dimethylacetamide and supporting rheological analysis, the entanglement concentration, ce, was identified as a minimum processing threshold for creating HFMs. Similarly, significant increases in the ultimate tensile strength, fracture strain, and Young's modulus for extruded HFMs were observed as polymer dope concentration was increased at levels near ce. Beyond this initial increase, subsequent tests at higher PSF concentrations yielded diminishing changes in mechanical properties, suggesting an asymptotic approach to a point where the trend would cease. Without further research, it is theorized that this point falls on a transition from the semidiute entangled to concentrated concentration regimes. SEM imaging of samples revealed the formation of grooved structures on the inner surface of samples, which was determined to be a result of the low flowrate and polymer dope concentrations used in processing the HFMs during apparatus runs. Based on continued operation of the preliminary apparatus design, many areas of improvement were noted. Namely, these consisted of controlling the collector speed, eliminating rubbing of nascent fibers against the edge of the coagulation bath by installing an elevated roller, and replacing tygon tubing for the polymer line with a luer lock adapter for direct syringe attachment to the spinneret.
ContributorsBridge, Alexander Thomas (Author) / Green, Matthew D. (Thesis director) / Lin, Jerry Y. S. (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
155664-Thumbnail Image.png
Description
Lithium ion batteries prepared with a ceramic separator, have proven to possess improved safety, reliability as well as performance characteristics when compared to those with polymer separators which are prone to thermal runaway. Purely inorganic separators are highly brittle and expensive. The electrode-supported ceramic separator permits thinner separators which are

Lithium ion batteries prepared with a ceramic separator, have proven to possess improved safety, reliability as well as performance characteristics when compared to those with polymer separators which are prone to thermal runaway. Purely inorganic separators are highly brittle and expensive. The electrode-supported ceramic separator permits thinner separators which are a lot more flexible in comparison. In this work, it was observed that not any α-alumina could be used by the blade coating process to get a good quality separator on Li4Ti5O12 (LTO) electrode. In this work specifically, the effect of particle size of α-alumina, on processability of slurry was investigated. The effect of the particle size variations on quality of separator formation was also studied. Most importantly, the effect of alumina particle size and its distribution on the performance of LTO/Li half cells is examined in detail. Large-sized particles were found to severely limit the ability to fabricate such separators. The α-alumina slurry was coated onto electrode substrate, leading to possible interaction between α-alumina and LTO substrate. The interaction between submicron sized particles of α-alumina with the substrate electrode pores, was found to affect the performance and the stability of the separator. Utilizing a bimodal distribution of submicron sized particles with micron sized particles of α-alumina to prepare the separator, improved cell performance was observed. Yet only a specific ratio of bimodal distribution achieved good results both in terms of separator formation and resulting cell performance. The interaction of α-alumina and binder in the separator, and its effect on the performance of substrate electrode was investigated, to understand the need for bimodal distribution of powder forming the separator.
ContributorsKanhere, Narayan Vishnu (Author) / Lin, Jerry Y. S. (Thesis advisor) / Kannan, Arunachala (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2017
149689-Thumbnail Image.png
Description
Ordered mesoporous materials have tunable pore sizes between 2 and 50 nm and are characterized by ordered pore structures and high surface areas (~1000 m2/g). This makes them particularly favorable for a number of membrane applications such as protein separation, polymer extrusion, nanowire fabrication and membrane reactors. These membranes can

Ordered mesoporous materials have tunable pore sizes between 2 and 50 nm and are characterized by ordered pore structures and high surface areas (~1000 m2/g). This makes them particularly favorable for a number of membrane applications such as protein separation, polymer extrusion, nanowire fabrication and membrane reactors. These membranes can be fabricated as top-layers on macroporous supports or as embedded membranes in a dense matrix. The first part of the work deals with the hydrothermal synthesis and water-vapor/oxygen separation properties of supported MCM-48 and a new Al-MCM-48 type membrane for potential use in air conditioning systems. Knudsen-type permeation is observed in these membranes. The combined effect of capillary condensation and the aluminosilicate matrix resulted in the highest separation factor (142) in Al-MCM-48 membranes, with a water vapor permeance of 6×10-8mol/m2Pas. The second part focuses on synthesis of embedded mesoporous silica membranes with helically ordered pores by a novel Counter Diffusion Self-Assembly (CDSA) method. This method is an extension of the interfacial synthesis method for fiber synthesis using tetrabutylorthosilicate (TBOS) and cetyltrimethylammonium bromide (CTAB) as the silica source and surfactant respectively. The initial part of this study determined the effect of TBOS height and humidity on fiber formation. From this study, the range of TBOS heights for best microscopic and macroscopic ordering were established. Next, the CDSA method was used to successfully synthesize membranes, which were characterized to have good support plugging and an ordered pore structure. Factors that influence membrane synthesis and plug microstructure were determined. SEM studies revealed the presence of gaps between the plugs and support pores, which occur due to shrinking of the plug on drying. Development of a novel liquid deposition method to seal these defects constituted the last part of this work. Post sealing, excess silica was removed by etching with hydrofluoric acid. Membrane quality was evaluated at each step using SEM and gas permeation measurements. After surfactant removal by liquid extraction, the membranes exhibited an O2 permeance of 1.65x10-6mol/m2.Pa.s and He/O2 selectivity of 3.30. The successful synthesis of this membrane is an exciting new development in the area of ordered mesoporous membrane technology.
ContributorsSeshadri, Shriya (Author) / Lin, Jerry Y. S. (Thesis advisor) / Dai, Lenore (Committee member) / Rege, Kaushal (Committee member) / Smith, David J. (Committee member) / Vogt, Bryan (Committee member) / Arizona State University (Publisher)
Created2011