Matching Items (78)
151545-Thumbnail Image.png
Description
A Pairwise Comparison Matrix (PCM) is used to compute for relative priorities of criteria or alternatives and are integral components of widely applied decision making tools: the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network Process (ANP). However, a PCM suffers from several issues limiting its application

A Pairwise Comparison Matrix (PCM) is used to compute for relative priorities of criteria or alternatives and are integral components of widely applied decision making tools: the Analytic Hierarchy Process (AHP) and its generalized form, the Analytic Network Process (ANP). However, a PCM suffers from several issues limiting its application to large-scale decision problems, specifically: (1) to the curse of dimensionality, that is, a large number of pairwise comparisons need to be elicited from a decision maker (DM), (2) inconsistent and (3) imprecise preferences maybe obtained due to the limited cognitive power of DMs. This dissertation proposes a PCM Framework for Large-Scale Decisions to address these limitations in three phases as follows. The first phase proposes a binary integer program (BIP) to intelligently decompose a PCM into several mutually exclusive subsets using interdependence scores. As a result, the number of pairwise comparisons is reduced and the consistency of the PCM is improved. Since the subsets are disjoint, the most independent pivot element is identified to connect all subsets. This is done to derive the global weights of the elements from the original PCM. The proposed BIP is applied to both AHP and ANP methodologies. However, it is noted that the optimal number of subsets is provided subjectively by the DM and hence is subject to biases and judgement errors. The second phase proposes a trade-off PCM decomposition methodology to decompose a PCM into a number of optimally identified subsets. A BIP is proposed to balance the: (1) time savings by reducing pairwise comparisons, the level of PCM inconsistency, and (2) the accuracy of the weights. The proposed methodology is applied to the AHP to demonstrate its advantages and is compared to established methodologies. In the third phase, a beta distribution is proposed to generalize a wide variety of imprecise pairwise comparison distributions via a method of moments methodology. A Non-Linear Programming model is then developed that calculates PCM element weights which maximizes the preferences of the DM as well as minimizes the inconsistency simultaneously. Comparison experiments are conducted using datasets collected from literature to validate the proposed methodology.
ContributorsJalao, Eugene Rex Lazaro (Author) / Shunk, Dan L. (Thesis advisor) / Wu, Teresa (Thesis advisor) / Askin, Ronald G. (Committee member) / Goul, Kenneth M (Committee member) / Arizona State University (Publisher)
Created2013
152414-Thumbnail Image.png
Description
Creative design lies at the intersection of novelty and technical feasibility. These objectives can be achieved through cycles of divergence (idea generation) and convergence (idea evaluation) in conceptual design. The focus of this thesis is on the latter aspect. The evaluation may involve any aspect of technical feasibility and may

Creative design lies at the intersection of novelty and technical feasibility. These objectives can be achieved through cycles of divergence (idea generation) and convergence (idea evaluation) in conceptual design. The focus of this thesis is on the latter aspect. The evaluation may involve any aspect of technical feasibility and may be desired at component, sub-system or full system level. Two issues that are considered in this work are: 1. Information about design ideas is incomplete, informal and sketchy 2. Designers often work at multiple levels; different aspects or subsystems may be at different levels of abstraction Thus, high fidelity analysis and simulation tools are not appropriate for this purpose. This thesis looks at the requirements for a simulation tool and how it could facilitate concept evaluation. The specific tasks reported in this thesis are: 1. The typical types of information available after an ideation session 2. The typical types of technical evaluations done in early stages 3. How to conduct low fidelity design evaluation given a well-defined feasibility question A computational tool for supporting idea evaluation was designed and implemented. It was assumed that the results of the ideation session are represented as a morphological chart and each entry is expressed as some combination of a sketch, text and references to physical effects and machine components. Approximately 110 physical effects were identified and represented in terms of algebraic equations, physical variables and a textual description. A common ontology of physical variables was created so that physical effects could be networked together when variables are shared. This allows users to synthesize complex behaviors from simple ones, without assuming any solution sequence. A library of 16 machine elements was also created and users were given instructions about incorporating them. To support quick analysis, differential equations are transformed to algebraic equations by replacing differential terms with steady state differences), only steady state behavior is considered and interval arithmetic was used for modeling. The tool implementation is done by MATLAB; and a number of case studies are also done to show how the tool works. textual description. A common ontology of physical variables was created so that physical effects could be networked together when variables are shared. This allows users to synthesize complex behaviors from simple ones, without assuming any solution sequence. A library of 15 machine elements was also created and users were given instructions about incorporating them. To support quick analysis, differential equations are transformed to algebraic equations by replacing differential terms with steady state differences), only steady state behavior is considered and interval arithmetic was used for modeling. The tool implementation is done by MATLAB; and a number of case studies are also done to show how the tool works.
ContributorsKhorshidi, Maryam (Author) / Shah, Jami J. (Thesis advisor) / Wu, Teresa (Committee member) / Gel, Esma (Committee member) / Arizona State University (Publisher)
Created2014
152768-Thumbnail Image.png
Description
In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact patient safety and hospital revenue. Any time instrumentation or devices are not available or are not fit for use, patient safety and revenue can be negatively impacted. One step of the instrument reprocessing cycle is sterilization. Steam sterilization is the sterilization method used for the majority of surgical instruments and is preferred to immediate use steam sterilization (IUSS) because terminally sterilized items can be stored until needed. IUSS Items must be used promptly and cannot be stored for later use. IUSS is intended for emergency situations and not as regular course of action. Unfortunately, IUSS is used to compensate for inadequate inventory levels, scheduling conflicts, and miscommunications. If IUSS is viewed as an adverse event, then monitoring IUSS incidences can help healthcare organizations meet patient safety goals and financial goals along with aiding in process improvement efforts. This work recommends statistical process control methods to IUSS incidents and illustrates the use of control charts for IUSS occurrences through a case study and analysis of the control charts for data from a health care provider. Furthermore, this work considers the application of data mining methods to IUSS occurrences and presents a representative example of data mining to the IUSS occurrences. This extends the application of statistical process control and data mining in healthcare applications.
ContributorsWeart, Gail (Author) / Runger, George C. (Thesis advisor) / Li, Jing (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2014
152893-Thumbnail Image.png
Description
Network traffic analysis by means of Quality of Service (QoS) is a popular research and development area among researchers for a long time. It is becoming even more relevant recently due to ever increasing use of the Internet and other public and private communication networks. Fast and precise QoS analysis

Network traffic analysis by means of Quality of Service (QoS) is a popular research and development area among researchers for a long time. It is becoming even more relevant recently due to ever increasing use of the Internet and other public and private communication networks. Fast and precise QoS analysis is a vital task in mission-critical communication networks (MCCNs), where providing a certain level of QoS is essential for national security, safety or economic vitality. In this thesis, the details of all aspects of a comprehensive computational framework for QoS analysis in MCCNs are provided. There are three main QoS analysis tasks in MCCNs; QoS measurement, QoS visualization and QoS prediction. Definitions of these tasks are provided and for each of those, complete solutions are suggested either by referring to an existing work or providing novel methods.

A scalable and accurate passive one-way QoS measurement algorithm is proposed. It is shown that accurate QoS measurements are possible using network flow data.

Requirements of a good QoS visualization platform are listed. Implementations of the capabilities of a complete visualization platform are presented.

Steps of QoS prediction task in MCCNs are defined. The details of feature selection, class balancing through sampling and assessing classification algorithms for this task are outlined. Moreover, a novel tree based logistic regression method for knowledge discovery is introduced. Developed prediction framework is capable of making very accurate packet level QoS predictions and giving valuable insights to network administrators.
ContributorsSenturk, Muhammet Burhan (Author) / Li, Jing (Thesis advisor) / Baydogan, Mustafa G (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153109-Thumbnail Image.png
Description
This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the

This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the speed of propagation of the initial crack could differ from different test conditions and different solder materials. A quantitative analysis about the fatigue behavior of SAC lead-free solder under thermal preconditioning process is conducted. This thesis presents a method of making prediction of failure life of solder alloy by building a Weibull regression model. The failure life of solder on circuit board is assumed Weibull distributed. Different materials and test conditions could affect the distribution by changing the shape and scale parameters of Weibull distribution. The method is to model the regression of parameters with different test conditions as predictors based on Bayesian inference concepts. In the process of building regression models, prior distributions are generated according to the previous studies, and Markov Chain Monte Carlo (MCMC) is used under WinBUGS environment.
ContributorsXu, Xinyue (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153145-Thumbnail Image.png
Description
The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5

The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5 to 30 years old that results in systematic predictive capability that is absent today. The warranty period provided by the manufacturers typically range from 20 to 25 years for crystalline silicon modules. The end of lifetime (for example, the time-to-degrade by 20% from rated power) of PV modules is usually calculated using a simple linear extrapolation based on the annual field degradation rate (say, 0.8% drop in power output per year). It has been 26 years since systematic studies on solar PV module lifetime prediction were undertaken as part of the 11-year flat-plate solar array (FSA) project of the Jet Propulsion Laboratory (JPL) funded by DOE. Since then, PV modules have gone through significant changes in construction materials and design; making most of the field data obsolete, though the effect field stressors on the old designs/materials is valuable to be understood. Efforts have been made to adapt some of the techniques developed to the current technologies, but they are too often limited in scope and too reliant on empirical generalizations of previous results. Some systematic approaches have been proposed based on accelerated testing, but no or little experimental studies have followed. Consequently, the industry does not exactly know today how to test modules for a 20 - 30 years lifetime.

This research study focuses on the behavior of crystalline silicon PV module technology in the dry and hot climatic condition of Tempe/Phoenix, Arizona. A three-phase approach was developed: (1) A quantitative failure modes, effects, and criticality analysis (FMECA) was developed for prioritizing failure modes or mechanisms in a given environment; (2) A time-series approach was used to model environmental stress variables involved and prioritize their effect on the power output drop; and (3) A procedure for developing a prediction model was proposed for the climatic specific condition based on accelerated degradation testing
ContributorsKuitche, Joseph Mathurin (Author) / Pan, Rong (Thesis advisor) / Tamizhmani, Govindasamy (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153065-Thumbnail Image.png
Description
Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data

Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data imbalance and data noise have been treated separately in the data mining field. Yet, such approach ignores the mutual effects and as a result may lead to new problems. A desirable solution is to tackle these two issues jointly. Noting the complementary nature of generative and discriminative models, this research proposes a unified model fusion based framework to handle the imbalanced classification with noisy dataset.

The phase I study focuses on the imbalanced classification problem. A generative classifier, Gaussian Mixture Model (GMM) is studied which can learn the distribution of the imbalance data to improve the discrimination power on imbalanced classes. By fusing this knowledge into cost SVM (cSVM), a CSG method is proposed. Experimental results show the effectiveness of CSG in dealing with imbalanced classification problems.

The phase II study expands the research scope to include the noisy dataset into the imbalanced classification problem. A model fusion based framework, K Nearest Gaussian (KNG) is proposed. KNG employs a generative modeling method, GMM, to model the training data as Gaussian mixtures and form adjustable confidence regions which are less sensitive to data imbalance and noise. Motivated by the K-nearest neighbor algorithm, the neighboring Gaussians are used to classify the testing instances. Experimental results show KNG method greatly outperforms traditional classification methods in dealing with imbalanced classification problems with noisy dataset.

The phase III study addresses the issues of feature selection and parameter tuning of KNG algorithm. To further improve the performance of KNG algorithm, a Particle Swarm Optimization based method (PSO-KNG) is proposed. PSO-KNG formulates model parameters and data features into the same particle vector and thus can search the best feature and parameter combination jointly. The experimental results show that PSO can greatly improve the performance of KNG with better accuracy and much lower computational cost.
ContributorsHe, Miao (Author) / Wu, Teresa (Thesis advisor) / Li, Jing (Committee member) / Silva, Alvin (Committee member) / Borror, Connie (Committee member) / Arizona State University (Publisher)
Created2014
153188-Thumbnail Image.png
Description
Conceptual design stage plays a critical role in product development. However, few systematic methods and tools exist to support conceptual design. The long term aim of this project is to develop a tool for facilitating holistic ideation for conceptual design. This research is a continuation of past efforts in ASU

Conceptual design stage plays a critical role in product development. However, few systematic methods and tools exist to support conceptual design. The long term aim of this project is to develop a tool for facilitating holistic ideation for conceptual design. This research is a continuation of past efforts in ASU Design Automation Lab. In past research, an interactive software test bed (Holistic Ideation Tool - version 1) was developed to explore logical ideation methods. Ideation states were identified and ideation strategies were developed to overcome common ideation blocks. The next version (version 2) of the holistic ideation tool added Cascading Evolutionary Morphological Charts (CEMC) framework and intuitive ideation strategies (reframing, restructuring, random connection, and forced connection).

Despite these remarkable contributions, there exist shortcomings in the previous versions (version 1 and version 2) of the holistic ideation tool. First, there is a need to add new ideation methods to the holistic ideation tool. Second, the organizational framework provided by previous versions needs to be improved, and a holistic approach needs to be devised, instead of separate logical or intuitive approaches. Therefore, the main objective of this thesis is to make the improvements and to resolve technical issues that are involved in their implementation.

Towards this objective, a new web based holistic ideation tool (version 3) has been created. The new tool adds and integrates Knowledge Bases of Mechanisms and Components Off-The-Shelf (COTS) into logical ideation methods. Additionally, an improved CEMC framework has been devised for organizing ideas efficiently. Furthermore, the usability of the tool has been improved by designing and implementing a new graphical user interface (GUI) which is more user friendly. It is hoped that these new features will lead to a platform for the designers to not only generate creative ideas but also effectively organize and store them in the conceptual design stage. By placing it on the web for public use, the Testbed has the potential to be used for research on the ideation process by effectively collecting large amounts of data from designers.
ContributorsNarsale, Sumit Sunil (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153346-Thumbnail Image.png
Description
This thesis presents research on innovative AC transmission design concepts and focused mathematics for electric power transmission design. The focus relates to compact designs, high temperature low sag conductors, and high phase order design. The motivation of the research is to increase transmission capacity with limited right of way.

Regarding compact

This thesis presents research on innovative AC transmission design concepts and focused mathematics for electric power transmission design. The focus relates to compact designs, high temperature low sag conductors, and high phase order design. The motivation of the research is to increase transmission capacity with limited right of way.

Regarding compact phase spacing, insight into the possibility of increasing the security rating of transmission lines is the primary focus through increased mutual coupling and decreased positive sequence reactance. Compact design can reduce the required corridor width to as little as 31% of traditional designs, especially with the use of inter-phase spacers. Typically transmission lines are built with conservative clearances, with difficulty obtaining right of way, more compact phase spacing may be needed. With design consideration significant compaction can produce an increase by 5-25% in the transmission line security (steady state stability) rating. In addition, other advantages and disadvantages of compact phase design are analyzed. Also, the next two topics: high temperature low sag conductors and high phase order designs include the use of compact designs.

High temperature low sag (HTLS) conductors are used to increase the thermal capacity of a transmission line up to two times the capacity compared to traditional conductors. HTLS conductors can operate continuously at 150-210oC and in emergency at 180-250oC (depending on the HTLS conductor). ACSR conductors operate continuously at 50-110oC and in emergency conditions at 110-150oC depending on the utility, line, and location. HTLS conductors have decreased sag characteristics of up to 33% compared to traditional ACSR conductors at 100oC and up to 22% at 180oC. In addition to what HTLS has to offer in terms of the thermal rating improvement, the possibility of using HTLS conductors to indirectly reduce tower height and compact the phases to increase the security limit is investigated. In addition, utilizing HTLS conductors to increase span length and decrease the number of transmission towers is investigated. The phase compaction or increased span length is accomplished by utilization of the improved physical sag characteristics of HTLS conductors.

High phase order (HPO) focuses on the ability to increase the power capacity for a given right of way. For example, a six phase line would have a thermal rating of approximately 173%, a security rating of approximately 289%, and the SIL would be approximately 300% of a double circuit three phase line with equal right of way and equal voltage line to line. In addition, this research focuses on algorithm and model development of HPO systems. A study of the impedance of HPO lines is presented. The line impedance matrices for some high phase order configurations are circulant Toeplitz matrices. Properties of circulant matrices are developed for the generalized sequence impedances of HPO lines. A method to calculate the sequence impedances utilizing unique distance parameter algorithms is presented. A novel method to design the sequence impedances to specifications is presented. Utilizing impedance matrices in circulant form, a generalized form of the sequence components transformation matrix is presented. A generalized voltage unbalance factor in discussed for HPO transmission lines. Algorithms to calculate the number of fault types and number of significant fault types for an n-phase system are presented. A discussion is presented on transposition of HPO transmission lines and a generalized fault analysis of a high phase order circuit is presented along with an HPO analysis program.

The work presented has the objective of increasing the use of rights of way for bulk power transmission through the use of innovative transmission technologies. The purpose of this dissertation is to lay down some of the building blocks and to help make the three technologies discussed practical applications in the future.
ContributorsPierre, Brian J (Author) / Heydt, Gerald (Thesis advisor) / Karady, George G. (Committee member) / Shunk, Dan (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2015
149997-Thumbnail Image.png
Description
This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower

This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development.
ContributorsKiefer, Brian Daniel (Author) / Heydt, Gerald T (Thesis advisor) / Shunk, Dan (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011