Matching Items (13)
152869-Thumbnail Image.png
Description
Preoperative team briefings have been suggested to be important for improving team performance in the operating room. Many high risk environments have accepted team briefings; however healthcare has been slower to follow. While applying briefings in the operating room has shown positive benefits including improved communication and perceptions of teamwork,

Preoperative team briefings have been suggested to be important for improving team performance in the operating room. Many high risk environments have accepted team briefings; however healthcare has been slower to follow. While applying briefings in the operating room has shown positive benefits including improved communication and perceptions of teamwork, most research has only focused on feasibility of implementation and not on understanding how the quality of briefings can impact subsequent surgical procedures. Thus, there are no formal protocols or methodologies that have been developed.

The goal of this study was to relate specific characteristics of team briefings back to objective measures of team performance. The study employed cognitive interviews, prospective observations, and principle component regression to characterize and model the relationship between team briefing characteristics and non-routine events (NREs) in gynecological surgery. Interviews were conducted with 13 team members representing each role on the surgical team and data were collected for 24 pre-operative team briefings and 45 subsequent surgical cases. The findings revealed that variations within the team briefing are associated with differences in team-related outcomes, namely NREs, during the subsequent surgical procedures. Synthesis of the data highlighted three important trends which include the need to promote team communication during the briefing, the importance of attendance by all surgical team members, and the value of holding a briefing prior to each surgical procedure. These findings have implications for development of formal briefing protocols.

Pre-operative team briefings are beneficial for team performance in the operating room. Future research will be needed to continue understanding this relationship between how briefings are conducted and team performance to establish more consistent approaches and as well as for the continuing assessment of team briefings and other similar team-related events in the operating room.
ContributorsHildebrand, Emily A (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Hallbeck, M. Susan (Committee member) / Bekki, Jennifer M (Committee member) / Blocker, Renaldo C (Committee member) / Arizona State University (Publisher)
Created2014
150067-Thumbnail Image.png
Description
The objective of this project was to evaluate human factors based cognitive aids on endoscope reprocessing. The project stems from recent failures in reprocessing (cleaning) endoscopes, contributing to the spread of harmful bacterial and viral agents between patients. Three themes were found to represent a majority of problems:

The objective of this project was to evaluate human factors based cognitive aids on endoscope reprocessing. The project stems from recent failures in reprocessing (cleaning) endoscopes, contributing to the spread of harmful bacterial and viral agents between patients. Three themes were found to represent a majority of problems: 1) lack of visibility (parts and tools were difficult to identify), 2) high memory demands, and 3) insufficient user feedback. In an effort to improve completion rate and eliminate error, cognitive aids were designed utilizing human factors principles that would replace existing manufacturer visual aids. Then, a usability test was conducted, which compared the endoscope reprocessing performance of novices using the standard manufacturer-provided visual aids and the new cognitive aids. Participants successfully completed 87.1% of the reprocessing procedure in the experimental condition with the use of the cognitive aids, compared to 46.3% in the control condition using only existing support materials. Twenty-five of sixty subtasks showed significant improvement in completion rates. When given a cognitive aid designed with human factors principles, participants were able to more successfully complete the reprocessing task. This resulted in an endoscope that was more likely to be safe for patient use.
ContributorsJolly, Jonathan D (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Sanchez, Christopher (Committee member) / Arizona State University (Publisher)
Created2011
151015-Thumbnail Image.png
Description
Fixed-pointer moving-scale tape displays are a compact way to present wide range dynamic data, and are commonly employed in aircraft and spacecraft to display the primary parameters of airspeed, altitude and heading. A limitation of the moving tape format is its inability to natively display off scale target, reference or

Fixed-pointer moving-scale tape displays are a compact way to present wide range dynamic data, and are commonly employed in aircraft and spacecraft to display the primary parameters of airspeed, altitude and heading. A limitation of the moving tape format is its inability to natively display off scale target, reference or 'bug' values. The hypothesis tested was that a non-linear fisheye presentation (made possible by modern display technology) would maintain the essential functionality and compactness of existing moving tape displays while increasing situational awareness by ecologically displaying a wider set of reference values. Experimentation showed that the speed and accuracy of reading the center system value was not significantly changed with two types of expanded range displays. The limited situational awareness tests did not show a significant improvement with the new displays, but since no functionality was degraded further testing of expanded range displays may be productive.
ContributorsEnglish, Dave (Author) / Branaghan, Russell J (Thesis advisor) / Cooke, Nancy J. (Committee member) / Sanchez, Christopher A (Committee member) / Arizona State University (Publisher)
Created2012
156463-Thumbnail Image.png
Description
Traditional usability methods in Human-Computer Interaction (HCI) have been extensively used to understand the usability of products. Measurements of user experience (UX) in traditional HCI studies mostly rely on task performance and observable user interactions with the product or services, such as usability tests, contextual inquiry, and subjective self-report data,

Traditional usability methods in Human-Computer Interaction (HCI) have been extensively used to understand the usability of products. Measurements of user experience (UX) in traditional HCI studies mostly rely on task performance and observable user interactions with the product or services, such as usability tests, contextual inquiry, and subjective self-report data, including questionnaires, interviews, and usability tests. However, these studies fail to directly reflect a user’s psychological involvement and further fail to explain the cognitive processing and the related emotional arousal. Thus, capturing how users think and feel when they are using a product remains a vital challenge of user experience evaluation studies. Conversely, recent research has revealed that sensor-based affect detection technologies, such as eye tracking, electroencephalography (EEG), galvanic skin response (GSR), and facial expression analysis, effectively capture affective states and physiological responses. These methods are efficient indicators of cognitive involvement and emotional arousal and constitute effective strategies for a comprehensive measurement of UX. The literature review shows that the impacts of sensor-based affect detection systems to the UX can be categorized in two groups: (1) confirmatory to validate the results obtained from the traditional usability methods in UX evaluations; and (2) complementary to enhance the findings or provide more precise and valid evidence. Both provided comprehensive findings to uncover the issues related to mental and physiological pathways to enhance the design of product and services. Therefore, this dissertation claims that it can be efficient to integrate sensor-based affect detection technologies to solve the current gaps or weaknesses of traditional usability methods. The dissertation revealed that the multi-sensor-based UX evaluation approach through biometrics tools and software corroborated user experience identified by traditional UX methods during an online purchasing task. The use these systems enhanced the findings and provided more precise and valid evidence to predict the consumer purchasing preferences. Thus, their impact was “complementary” on overall UX evaluation. The dissertation also provided information of the unique contributions of each tool and recommended some ways user experience researchers can combine both sensor-based and traditional UX approaches to explain consumer purchasing preferences.
ContributorsKula, Irfan (Author) / Atkinson, Robert K (Thesis advisor) / Roscoe, Rod D. (Thesis advisor) / Branaghan, Russell J (Committee member) / Arizona State University (Publisher)
Created2018
154715-Thumbnail Image.png
Description
Learners' attitudes and beliefs during the initial stages of learning have a profound impact on their future decisions, practice habits, and persistence. In music education, however, surprisingly little research has explored how physical equipment design might influence novices' attitudes and beliefs. The current study addresses this gap by examining how

Learners' attitudes and beliefs during the initial stages of learning have a profound impact on their future decisions, practice habits, and persistence. In music education, however, surprisingly little research has explored how physical equipment design might influence novices' attitudes and beliefs. The current study addresses this gap by examining how novices' motivation and perception differ based on the physical design of the musical instrument they interact with while learning. Fifty-two adult participants completed an online survey measuring their expectancies (e.g., confidence), value beliefs (e.g., enjoyment, interest, and social merit), and anticipated persistence while attempting to learn the electric guitar. Afterward, participants attempted to learn and perform several beginner-level tasks while using a conventionally designed or ergonomically designed guitar. The conventionally designed guitar was a commercially available model marketed toward beginner and intermediate-level guitarists. In contrast, the ergonomic guitar was a custom model based on expert design recommendations to improve ease of use, comfort, and user experience. Participant learning expectations and values were assessed before and after a one-hour practice session. Results revealed that novices who used the ergonomic guitar reported significant gains in anticipated learning enjoyment. Alternatively, novices who used the conventional guitar exhibited no such change. Beyond this relationship however, the ergonomic guitar was not found to meaningfully affect participants' confidence, interest, physical discomfort, and task difficulty perceptions. Additionally, the ergonomic guitar did not have a statistically significant influence on learning persistence ratings. One important implication extracted from this study is that a single practice session may not provide enough time or experience to affect a novices' attitudes and beliefs toward learning. Future studies may seek to remedy this study limitation by using a longitudinal design or longer practice task trials. Despite this limitation however, this exploratory study highlights the need for researchers, music educators, and instrument manufacturers to carefully consider how the physical design of a musical instrument may impact learning attitudes, choices, and persistence over time. Additionally, this study offers the first attempt at extending the equipment design literature to music education and Expectancy-Value Theory.
ContributorsO'Brian, Joseph (Author) / Roscoe, Rod D. (Thesis advisor) / Branaghan, Russell J (Committee member) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2016
168319-Thumbnail Image.png
Description
Human operators are more prone to errors under high-workload conditions. However, error-commission research in cognitive science has been limited to studying behavior in single-choice reaction time tasks, which do not represent the complex multitasking scenarios faced in the real-world. In the current paper, prior evidence for a cognitive error-monitoring mechanism

Human operators are more prone to errors under high-workload conditions. However, error-commission research in cognitive science has been limited to studying behavior in single-choice reaction time tasks, which do not represent the complex multitasking scenarios faced in the real-world. In the current paper, prior evidence for a cognitive error-monitoring mechanism was applied toward predictions for how humans would react after making errors in a more ecologically valid multitasking paradigm. Previous work on neural and behavioral indices of error-monitoring strongly supports the idea that errors are distracting and can deplete attentional resources. Therefore, it was predicted that after committing an error, if a subject is subsequently presented with two simultaneously initiated task alerts (a conflict trial), they would be more likely to miss their response opportunity for one task and stay tunneled on the other task that originally caused the error. Additionally, it was predicted that this effect would dissipate after several seconds (under different lag conditions), making the error cascade less likely when subsequent tasks are delayed before presentation. A Multi-Attribute Task Battery was used to present the paradigm and collect post-error and post-correct performance measures. The results supported both predictions: Post-error accuracy was significantly lower as compared to post-correct accuracy (as measured through post-trial error rates). Post-trial error rates were also higher at shorter lags and dissipated over time, and the effects of pre-conflict performance on post-trial error rates was especially noticeable at shorter lags (although the interaction was not statistically significant). A follow-up analysis also demonstrated that following errors (as opposed to following correct trials), participants clicked significantly more on the task that originally caused the error (regardless of lag). This continued task-engagement further supports the idea that errors lead to a cognitive tunneling effect. The study provides evidence that in a multitasking scenario, the human cognitive error-monitoring mechanism can be maladaptive, where errors beget more errors. Additionally, the experimental paradigm provides a bridge between concepts originating in highly controlled methods of cognitive science research and more applied scenarios in the field of human factors.
ContributorsLewis, Christina Mary (Author) / Gutzwiller, Robert S (Thesis advisor) / Becker, David V (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2021
172009-Thumbnail Image.png
Description
Cyber operations are a complex sociotechnical system where humans and computers are operating in an environments in constant flux, as new technology and procedures are applied. Once inside the network, establishing a foothold, or beachhead, malicious actors can collect sensitive information, scan targets, and execute an attack.Increasing defensive capabilities through

Cyber operations are a complex sociotechnical system where humans and computers are operating in an environments in constant flux, as new technology and procedures are applied. Once inside the network, establishing a foothold, or beachhead, malicious actors can collect sensitive information, scan targets, and execute an attack.Increasing defensive capabilities through cyber deception shows great promise by providing an opportunity to delay and disrupt an attacker once network perimeter security has already been breached. Traditional Human Factors research and methods are designed to mitigate human limitations (e.g., mental, physical) to improve performance. These methods can also be used combatively to upend performance. Oppositional Human Factors (OHF), seek to strategically capitalize on cognitive limitations by eliciting decision-making errors and poor usability. Deceptive tactics to elicit decision-making biases might infiltrate attacker processes with uncertainty and make the overall attack economics unfavorable and cause an adversary to make mistakes and waste resources. Two online experimental platforms were developed to test the Sunk Cost Fallacy in an interactive, gamified, and abstracted version of cyber attacker activities. This work presents the results of the Cypher platform. Offering a novel approach to understand decision-making and the Sunk Cost Fallacy influenced by factors of uncertainty, project completion and difficulty on progress decisions. Results demonstrate these methods are effective in delaying attacker forward progress, while further research is needed to fully understand the context in which decision-making limitations do and do not occur. The second platform, Attack Surface, is described. Limitations and lessons learned are presented for future work.
ContributorsJohnson, Chelsea Kae (Author) / Gutzwiller, Robert S (Thesis advisor) / Cooke, Nancy (Committee member) / Shade, Temmie (Committee member) / Ferguson-Walter, Kimberly (Committee member) / Roscoe, Rod (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2022
187611-Thumbnail Image.png
Description
Proper allocation of attention while driving is imperative to driver safety, as well as the safety of those around the driver. There is no doubt that in-vehicle alerts can effectively direct driver attention. In fact, visual, auditory, and tactile alert modalities have all shown to be more effective than no

Proper allocation of attention while driving is imperative to driver safety, as well as the safety of those around the driver. There is no doubt that in-vehicle alerts can effectively direct driver attention. In fact, visual, auditory, and tactile alert modalities have all shown to be more effective than no alert at all. However, research on in-vehicle alerts has primarily been limited to single-hazard scenarios. The current research examines the effects of in-vehicle alert modality on driver attention towards simultaneously occurring hazards. When a driver is presented with multiple stimuli simultaneously, there is the risk that they will experience alert masking, when one stimulus is obscured by the presence of another stimulus. As the number of concurrent stimuli increases, the ability to report targets decreases. Meanwhile, the alert acts as another target that they must also process. Recent research on masking effects of simultaneous alerts has shown masking to lead to breakdowns in detection and identification of alarms during a task, outlining a possible cost of alert technology. Additionally, existing work has shown auditory alerts to be more effective in directing driver attention, resulting in faster reaction times (RTs) than visual alerts. Multiple Resource Theory suggests that because of the highly visual nature of driving, drivers may have more auditory resources than visual resources available to process stimuli without becoming overloaded. Therefore, it was predicted that auditory alerts would be more effective in allowing drivers to recognize both potential hazards, measured though reduced brake reaction times and increased accuracy during a post-drive hazard observance question. The current study did not support the hypothesis. Modality did not result in a significant difference in drivers’ attention to simultaneously occurring hazards. The salience of hazards in each scenario seemed to make the largest impact on whether participants observed the hazard. Though the hypothesis was not supported, there were several limitations. Additionally, and regardless, the study results did point to the importance of further research on simultaneously occurring hazards. These scenarios pose a risk to drivers, especially when their attention is allocated to only one of the hazards.
ContributorsMcAlphin, Morgan (Author) / Gutzwiller, Robert S (Thesis advisor) / Cooke, Nancy (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2023
158874-Thumbnail Image.png
Description
Communications between air traffic controllers and pilots are critical to national airspace traffic management. Measuring communications in real time made by pilots and air traffic controllers has the potential to predict human error. In this thesis a measure for Deviations from Closed Loop Communications is defined and tested to predict

Communications between air traffic controllers and pilots are critical to national airspace traffic management. Measuring communications in real time made by pilots and air traffic controllers has the potential to predict human error. In this thesis a measure for Deviations from Closed Loop Communications is defined and tested to predict a human error event, Loss of Separation (LOS). Six retired air traffic controllers were recruited and tested in three conditions of varying workload in an Terminal Radar Approach Control Facility (TRACON) arrival radar simulation. Communication transcripts from simulated trials were transcribed and coding schemes for Closed Loop Communication Deviations (CLCD) were applied. Results of the study demonstrated a positive correlation between CLCD and LOS, indicating that CLCD could be a variable used to predict LOS. However, more research is required to determine if CLCD can be used to predict LOS independent of other predictor variables, and if CLCD can be used in a model that considers many different predictor variables to predict LOS.
ContributorsLieber, Christopher Shane (Author) / Cooke, Nancy J. (Thesis advisor) / Gutzwiller, Robert S (Committee member) / Niemczyk, Mary (Committee member) / Arizona State University (Publisher)
Created2020
158593-Thumbnail Image.png
Description
The choices of an operator under heavy cognitive load are potentially critical to overall safety and performance. Such conditions are common when technological failures arise, and the operator is forced into multi-task situations. Task switching choice was examined in an effort to both validate previous work concerning a model of

The choices of an operator under heavy cognitive load are potentially critical to overall safety and performance. Such conditions are common when technological failures arise, and the operator is forced into multi-task situations. Task switching choice was examined in an effort to both validate previous work concerning a model of task overload management and address unresolved matters related to visual sampling. Using the Multi-Attribute Task Battery and eye tracking, the experiment studied any influence of task priority and difficulty. Continuous visual attention measurements captured attentional switches that do not manifest into behaviors but may provide insight into task switching choice. Difficulty was found to have an influence on task switching behavior; however, priority was not. Instead, priority may affect time spent on a task rather than strictly choice. Eye measures revealed some moderate connections between time spent dwelling on a task and subjective interest. The implication of this, as well as eye tracking used to validate a model of task overload management as a whole, is discussed.
ContributorsZabala, Garrett (Author) / Gutzwiller, Robert S (Thesis advisor) / Cooke, Nancy J. (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2020