Matching Items (3,359)
Filtering by

Clear all filters

152226-Thumbnail Image.png
Description
Farmers' markets are a growing trend both in Arizona and the broader U.S., as many recognize them as desirable alternatives to the conventional food system. As icons of sustainability, farmers' markets are touted as providing many environmental, social, and economic benefits, but evidence is mounting that local food systems primarily

Farmers' markets are a growing trend both in Arizona and the broader U.S., as many recognize them as desirable alternatives to the conventional food system. As icons of sustainability, farmers' markets are touted as providing many environmental, social, and economic benefits, but evidence is mounting that local food systems primarily serve the urban elite, with relatively few low-income or minority customers. However, the economic needs of the market and its vendors often conflict with those of consumers. While consumers require affordable food, farmers need to make a profit. How farmers' markets are designed and governed can significantly influence the extent to which they can meet these needs. However, very little research explores farmers' market design and governance, much less its capacity to influence financial success and participation for underprivileged consumers. The present study examined this research gap by addressing the following research question: How can farmers' markets be institutionally designed to increase the participation of underprivileged consumers while maintaining a financially viable market for local farmers? Through a comparative case study of six markets, this research explored the extent to which farmers' markets in Central Arizona currently serve the needs of farmer-vendors and underprivileged consumers. The findings suggest that while the markets serve as a substantial source of income for some vendors, participation by low-income and minority consumers remains low, and that much of this appears to be due to cultural barriers to access. Management structures, site characteristics, market layout, community programs, and staffing policies are key institutional design features, and the study explores how these can be leveraged to better meet the needs of the diverse participants while improving the markets' financial success.
ContributorsTaylor, Carissa (Author) / Aggarwal, Rimjhim (Thesis advisor) / York, Abigail (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2013
152084-Thumbnail Image.png
Description
This research presents an analysis of the main institutions and economic incentives that drive farmers behaviors on water use in the Chancay-Lambayeque basin, located in Lambayeque (Peru), a semi arid area of great agricultural importance. I focus my research on identifying the underlying causes of non-collaborative behaviors in regard to

This research presents an analysis of the main institutions and economic incentives that drive farmers behaviors on water use in the Chancay-Lambayeque basin, located in Lambayeque (Peru), a semi arid area of great agricultural importance. I focus my research on identifying the underlying causes of non-collaborative behaviors in regard to water appropriation and infrastructure provisioning decision that generates violent conflicts between users. Since there is not an agreed and concrete criteria to assess "sustainability" I used economic efficiency as my evaluative criteria because, even though this is not a sufficient condition to achieve sustainability it is a necessary one, and thus achieving economic efficiency is moving towards sustainable outcomes. Water management in the basin is far from being economic efficient which means that there is some room for improving social welfare. Previous studies of the region have successfully described the symptoms of this problem; however, they did not focus their study on identifying the causes of the problem. In this study, I describe and analyze how different rules and norms (institutions) define farmers behaviors related to water use. For this, I use the Institutional Analysis and Development framework and a dynamic game theory model to analyze how biophysical attributes, community attributes and rules of the system combined with other factors, can affect farmers actions in regard to water use and affect the sustainability of water resources. Results show that water rights are the factor that is fundamental to the problem. Then, I present an outline for policy recommendation, which includes a revision of water rights and related rules and policies that could increase the social benefits with the use of compensation mechanisms to reach economic efficiency. Results also show that commonly proposed solutions, as switch to less water intensive and more added value crops, improvement in the agronomic and entrepreneurial knowledge, or increases in water tariffs, can mitigate or exacerbate the loss of benefits that come from the poor incentives in the system; but they do not change the nature of the outcome.
ContributorsRubinos, Cathy (Author) / Eakin, Hallie (Committee member) / Abbot, Joshua K (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2013
151938-Thumbnail Image.png
Description

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient

Hydrology and biogeochemistry are coupled in all systems. However, human decision-making regarding hydrology and biogeochemistry are often separate, even though decisions about hydrologic systems may have substantial impacts on biogeochemical patterns and processes. The overarching question of this dissertation was: How does hydrologic engineering interact with the effects of nutrient loading and climate to drive watershed nutrient yields? I conducted research in two study systems with contrasting spatial and temporal scales. Using a combination of data-mining and modeling approaches, I reconstructed nitrogen and phosphorus budgets for the northeastern US over the 20th century, including anthropogenic nutrient inputs and riverine fluxes, for ~200 watersheds at 5 year time intervals. Infrastructure systems, such as sewers, wastewater treatment plants, and reservoirs, strongly affected the spatial and temporal patterns of nutrient fluxes from northeastern watersheds. At a smaller scale, I investigated the effects of urban stormwater drainage infrastructure on water and nutrient delivery from urban watersheds in Phoenix, AZ. Using a combination of field monitoring and statistical modeling, I tested hypotheses about the importance of hydrologic and biogeochemical control of nutrient delivery. My research suggests that hydrology is the major driver of differences in nutrient fluxes from urban watersheds at the event scale, and that consideration of altered hydrologic networks is critical for understanding anthropogenic impacts on biogeochemical cycles. Overall, I found that human activities affect nutrient transport via multiple pathways. Anthropogenic nutrient additions increase the supply of nutrients available for transport, whereas hydrologic infrastructure controls the delivery of nutrients from watersheds. Incorporating the effects of hydrologic infrastructure is critical for understanding anthropogenic effects on biogeochemical fluxes across spatial and temporal scales.

ContributorsHale, Rebecca Leslie (Author) / Grimm, Nancy (Thesis advisor) / Childers, Daniel (Committee member) / Vivoni, Enrique (Committee member) / York, Abigail (Committee member) / Wu, Jianguo (Committee member) / Arizona State University (Publisher)
Created2013
152746-Thumbnail Image.png
Description
Many wildlife species that are essential to human livelihoods are targeted with the aim of extracting short-term benefits. Overexploitation, resulting from failed common-pool resource governance, has endangered the sustainability of large animal species, in particular. Rights-based approaches to wildlife conservation offer a possible path forward. In a wildlife market, property

Many wildlife species that are essential to human livelihoods are targeted with the aim of extracting short-term benefits. Overexploitation, resulting from failed common-pool resource governance, has endangered the sustainability of large animal species, in particular. Rights-based approaches to wildlife conservation offer a possible path forward. In a wildlife market, property rights, or shares of an animal population, are allocated to resource users with interests in either harvest or preservation. Here, I apply the Social-Ecological Systems (SES) framework (Ostrom, 2009) to identify the conditions under which the ecological, social, and economic outcomes of a conservation market are improved compared to the status quo. I first consider three case studies (Bighorn sheep, white rhino, and Atlantic Bluefin tuna) all of which employ different market mechanisms. Based on the SES framework and these case studies, I then evaluate whether markets are a feasible management option for other socially and ecologically significant species, such as whales (and similar highly migratory species), and whether market instruments are capable of accommodating non-consumptive environmental values in natural resource decision making. My results suggest that spatial and temporal distribution, ethical and cultural relevance, and institutional histories compatible with commodification of wildlife are key SES subsystem variables. Successful conservation markets for cross-boundary marine species, such as whales, sea turtles, and sharks, will require intergovernmental agreements.
ContributorsSturm, Melanie (Author) / Minteer, Ben A (Thesis advisor) / Gerber, Leah R. (Thesis advisor) / Perrings, Charles (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2014
151161-Thumbnail Image.png
Description
Over the last few decades, the western United States has experienced more extreme wildland fire events, remarkable for their size and severity. The frequency, intensity, and size of wildfires is projected to only increase, with severe consequences for biodiversity, ecosystem services, human property, and more broadly, the sustainability of western

Over the last few decades, the western United States has experienced more extreme wildland fire events, remarkable for their size and severity. The frequency, intensity, and size of wildfires is projected to only increase, with severe consequences for biodiversity, ecosystem services, human property, and more broadly, the sustainability of western forests. These trends are the result of a complex suite of factors including, past land-use policies, fire suppression, climate change, and human development. To protect fire-adapted ecosystems from further damage, fuel reduction and fire reintroduction are required over large landscapes, necessitating government agencies, landowners, and other interests to work together. In response, collaborative fire restoration efforts are forming to carry out this much needed work. This research takes a multi-level approach to understanding these new models for fire management and restoration. Collaborative, landscape-level approaches to fire reintroduction are a direct response to a failure in past policies and approaches, which necessitates a discussion of why these policies allowed fires to grow worse and why management failed to effectively prevent this from happening. Thus, a historical analysis of wildland fire policy and management constitutes one layer in this analysis. Collaborative frameworks to wildland fire reintroduction are few and far between, which obliges a discussion of how collaboration works and why it may be necessary. An in-depth case study of FireScape, a collaborative effort in southeastern Arizona to restore wildfire completes this analysis and provides a discussion of the challenges, benefits, and implications of these new approaches. The context for this case study is southeastern Arizona's Sky Islands. The Sky Islands region spans the U.S. Mexico borderlands and is a biodiversity hotspot, making it an ideal place to explore the interactions between humans and natural systems. The more recent emphasis on collaboration in wildfire management has yet to be fully explored in other academic circles. Collaboration is essential in fire restoration and provides one pathway to solve complex natural resource management issues.
ContributorsRaymondi, Ann Marie (Author) / Hirt, Paul W (Thesis advisor) / York, Abigail (Thesis advisor) / Pyne, Stephen J (Committee member) / Arizona State University (Publisher)
Created2012
154161-Thumbnail Image.png
Description
Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however, what happens when the people regulating these extensively managed landscapes come under stress, whether from unexpected economic fluctuations or from

Often, when thinking of cities we envision designed landscapes, where people regulate everything from water to weeds, ultimately resulting in an ecosystem decoupled from biophysical processes. It is unclear, however, what happens when the people regulating these extensively managed landscapes come under stress, whether from unexpected economic fluctuations or from changing climate norms. The overarching question of my dissertation research was: How does urban vegetation change in response to human behavior? To answer this question, I conducted multiscale research in an arid urban ecosystem as well as in a virtual desert city. I used a combination of long-term data and agent-based modeling to examine changes in vegetation across a range of measures influenced by biophysical, climate, institutional, and socioeconomic drivers. At the regional scale, total plant species diversity increased from 2000 to 2010, while species composition became increasingly homogeneous in urban and agricultural areas. At the residential scale, I investigated the effects of biophysical and socioeconomic drivers – the Great Recession of 2007-2010 in particular – on changing residential yard vegetation in Phoenix, AZ. Socioeconomic drivers affected plant composition and increasing richness, but the housing boom from 2000 through 2005 had a stronger influence on vegetation change than the subsequent recession. Surprisingly, annual plant species remained coupled to winter precipitation despite my expectation that their dynamics might be driven by socioeconomic fluctuations. In a modeling experiment, I examined the relative strength of psychological, social, and governance influences on large-scale urban land cover in a desert city. Model results suggested that social norms may be strong enough to lead to large-scale conversion to low water use residential landscaping, and governance may be unnecessary to catalyze residential landscape conversion under the pressure of extreme drought conditions. Overall, my dissertation research showed that urban vegetation is dynamic, even under the presumably stabilizing influence of human management activities. Increasing climate pressure, unexpected socioeconomic disturbances, growing urban populations, and shifting policies all contribute to urban vegetation dynamics. Incorporating these findings into planning policies will contribute to the sustainable management of urban ecosystems.
ContributorsRipplinger, Julie (Author) / Franklin, Janet (Thesis advisor) / Collins, Scott L. (Thesis advisor) / Anderies, John M (Committee member) / Childers, Daniel L. (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2015