Matching Items (3,342)
Filtering by

Clear all filters

149789-Thumbnail Image.png
Description
The greatest challenge facing humanity in the twenty-first century is our ability to reconcile the capacity of natural systems to support continued improvement in human welfare around the globe. Over the last decade, the scientific community has attempted to formulate research agendas in response to what they view as the

The greatest challenge facing humanity in the twenty-first century is our ability to reconcile the capacity of natural systems to support continued improvement in human welfare around the globe. Over the last decade, the scientific community has attempted to formulate research agendas in response to what they view as the problems of sustainability. Perhaps the most prominent and wide-ranging of these efforts has been sustainability science, an interdisciplinary, problem-driven field that seeks to address fundamental questions on human-environment interactions. This project examines how sustainability scientists grapple with and bound the deeply social, political and normative dimensions of both characterizing and pursuing sustainability. Based on in-depth interviews with leading researchers and a content analysis of the relevant literature, this project first addresses three core questions: (1) how sustainability scientists define and bound sustainability; (2) how and why various research agendas are being constructed to address these notions of sustainability; (3) and how scientists see their research contributing to societal efforts to move towards sustainability. Based on these results, the project explores the tensions between scientific efforts to study and inform sustainability and social action. It discusses the implications of transforming sustainability into the subject of scientific analysis with a focus on the power of science to constrain discourse and the institutional and epistemological contexts that link knowledge to societal outcomes. Following this analysis, sustainability science is repositioned, borrowing Herbert Simon's concept, as a "science of design." Sustainability science has thus far been too focused on understanding the "problem-space"--addressing fundamental questions about coupled human-natural systems. A new set objectives and design principles are proposed that would move the field toward a more solutions-oriented approach and the enrichment of public reasoning and deliberation. Four new research streams that would situate sustainability science as a science of design are then discussed: creating desirable futures, socio-technical change, sustainability values, and social learning. The results serve as a foundation for a sustainability science that is evaluated on its ability to frame sustainability problems and solutions in ways that make them amenable to democratic and pragmatic social action.
ContributorsMiller, Thaddeus R. (Author) / Minteer, Ben A (Thesis advisor) / Redman, Charles L. (Committee member) / Sarewitz, Daniel (Committee member) / Wiek, Arnim (Committee member) / Arizona State University (Publisher)
Created2011
156772-Thumbnail Image.png
Description

Motivated by the need for cities to prepare and be resilient to unpredictable future weather conditions, this dissertation advances a novel infrastructure development theory of “safe-to-fail” to increase the adaptive capacity of cities to climate change. Current infrastructure development is primarily reliant on identifying probable risks to engineered systems and

Motivated by the need for cities to prepare and be resilient to unpredictable future weather conditions, this dissertation advances a novel infrastructure development theory of “safe-to-fail” to increase the adaptive capacity of cities to climate change. Current infrastructure development is primarily reliant on identifying probable risks to engineered systems and making infrastructure reliable to maintain its function up to a designed system capacity. However, alterations happening in the earth system (e.g., atmosphere, oceans, land, and ice) and in human systems (e.g., greenhouse gas emission, population, land-use, technology, and natural resource use) are increasing the uncertainties in weather predictions and risk calculations and making it difficult for engineered infrastructure to maintain intended design thresholds in non-stationary future. This dissertation presents a new way to develop safe-to-fail infrastructure that departs from the current practice of risk calculation and is able to manage failure consequences when unpredicted risks overwhelm engineered systems.

This dissertation 1) defines infrastructure failure, refines existing safe-to-fail theory, and compares decision considerations for safe-to-fail vs. fail-safe infrastructure development under non-stationary climate; 2) suggests an approach to integrate the estimation of infrastructure failure impacts with extreme weather risks; 3) provides a decision tool to implement resilience strategies into safe-to-fail infrastructure development; and, 4) recognizes diverse perspectives for adopting safe-to-fail theory into practice in various decision contexts.

Overall, this dissertation advances safe-to-fail theory to help guide climate adaptation decisions that consider infrastructure failure and their consequences. The results of this dissertation demonstrate an emerging need for stakeholders, including policy makers, planners, engineers, and community members, to understand an impending “infrastructure trolley problem”, where the adaptive capacity of some regions is improved at the expense of others. Safe-to-fail further engages stakeholders to bring their knowledge into the prioritization of various failure costs based on their institutional, regional, financial, and social capacity to withstand failures. This approach connects to sustainability, where city practitioners deliberately think of and include the future cost of social, environmental and economic attributes in planning and decision-making.

ContributorsKim, Yeowon (Author) / Chester, Mikhail (Thesis advisor) / Eakin, Hallie (Committee member) / Redman, Charles (Committee member) / Miller, Thaddeus R. (Committee member) / Arizona State University (Publisher)
Created2018
154890-Thumbnail Image.png
Description

There is much at stake with the smart city. This urban governance movement is

predicated on infusing information-and-communication technology into nearly all aspects of the built environment, while at the same time transforming how cities are planned and managed. The smart city movement is global in scale with initiatives being rolled

There is much at stake with the smart city. This urban governance movement is

predicated on infusing information-and-communication technology into nearly all aspects of the built environment, while at the same time transforming how cities are planned and managed. The smart city movement is global in scale with initiatives being rolled out all over the planet, driven by proponents with deep pockets of wealth and influence, and a lucrative opportunity with market projections in the billions or trillions of dollars (over the next five to ten years). However, the smart city label can be nebulous and amorphous, seemingly subsuming unrelated technologies, practices, and policies as necessary. Yet, even with this ambiguity, or perhaps because of it, the smart city vision is still able to colonize urban landscapes and capture the political imaginations of decision makers. In order to know just what the smart city entails I work to bring analytic clarity to the actions, visions, and values of this movement.

In short, the arc of this project moves from diving into the "smart city" discourses; to picking apart the ideologies at its heart; to engaging with the dual logics—control and accumulation—that drive the smart city; and finally to imagining what an alternative techno- politics might look like and how we might achieve it. My goal is that by analyzing the techno- politics of the smart city we will be better equipped to understand these urban transformations— what logics drive them, what they herald, and what our role should be in how they develop.

ContributorsSadowski, Jathan (Author) / Guston, David H. (Thesis advisor) / Finn, Edward (Committee member) / Miller, Thaddeus R. (Committee member) / Arizona State University (Publisher)
Created2016