Matching Items (3,343)
Filtering by

Clear all filters

152507-Thumbnail Image.png
Description
Titanium oxide (TiO2), an abundant material with high photocatalytic activity and chemical stability is an important candidate for photocatalytic applications. The photocatalytic activity of the TiO2 varies with its phase. In the current project, phase and morphology changes in TiO2 nanotubes were studied using ex-situ and in-situ transmission electron microscopy

Titanium oxide (TiO2), an abundant material with high photocatalytic activity and chemical stability is an important candidate for photocatalytic applications. The photocatalytic activity of the TiO2 varies with its phase. In the current project, phase and morphology changes in TiO2 nanotubes were studied using ex-situ and in-situ transmission electron microscopy (TEM). X-ray diffraction and scanning electron microscopy studies were also performed to understand the phase and morphology of the nanotubes. As prepared TiO2 nanotubes supported on Ti metal substrate were amorphous, during the heat treatment in the ex-situ furnace nanotubes transform to anatase at 450 oC and transformed to rutile when heated to 800 oC. TiO2 nanotubes that were heat treated in an in-situ environmental TEM, transformed to anatase at 400 oC and remain anatase even up to 800 oC. In both ex-situ an in-situ case, the morphology of the nanotubes drastically changed from a continuous tubular structure to aggregates of individual nanoparticles. The difference between the ex-situ an in-situ treatments and their effect on the phase transformation is discussed. Metal doping is one of the effective ways to improve the photocatalytic performance. Several approaches were performed to get metal loading on to the TiO2 nanotubes. Mono-dispersed platinum nanoparticles were deposited on the TiO2 nanopowder and nanotubes using photoreduction method. Photo reduction for Ag and Pt bimetallic nanoparticles were also performed on the TiO2 powders.
ContributorsSantra, Sanjitarani (Author) / Crozier, Peter A. (Thesis advisor) / Carpenter, Ray (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2014
150311-Thumbnail Image.png
Description
HgCdTe is the dominant material currently in use for infrared (IR) focal-plane-array (FPA) technology. In this dissertation, transmission electron microscopy (TEM) was used for the characterization of epitaxial HgCdTe epilayers and HgCdTe-based devices. The microstructure of CdTe surface passivation layers deposited either by hot-wall epitaxy (HWE) or molecular beam epitaxy

HgCdTe is the dominant material currently in use for infrared (IR) focal-plane-array (FPA) technology. In this dissertation, transmission electron microscopy (TEM) was used for the characterization of epitaxial HgCdTe epilayers and HgCdTe-based devices. The microstructure of CdTe surface passivation layers deposited either by hot-wall epitaxy (HWE) or molecular beam epitaxy (MBE) on HgCdTe heterostructures was evaluated. The as-deposited CdTe passivation layers were polycrystalline and columnar. The CdTe grains were larger and more irregular when deposited by HWE, whereas those deposited by MBE were generally well-textured with mostly vertical grain boundaries. Observations and measurements using several TEM techniques showed that the CdTe/HgCdTe interface became considerably more abrupt after annealing, and the crystallinity of the CdTe layer was also improved. The microstructure and compositional profiles of CdTe(211)B/ZnTe/Si(211) heterostructures grown by MBE was investigated. Many inclined {111}-type stacking faults were present throughout the thin ZnTe layer, terminating near the point of initiation of CdTe growth. A rotation angle of about 3.5° was observed between lattice planes of the Si substrate and the final CdTe epilayer. Lattice parameter measurement and elemental profiles indicated that some local intermixing of Zn and Cd had taken place. The average widths of the ZnTe layer and the (Cd, Zn)Te transition region were found to be roughly 6.5 nm and 3.5 nm, respectively. Initial observations of CdTe(211)B/GaAs(211) heterostructures indicated much reduced defect densities near the vicinity of the substrate and within the CdTe epilayers. HgCdTe epilayers grown on CdTe(211)B/GaAs(211) composite substrate were generally of high quality, despite the presence of precipitates at the HgCdTe/CdTe interface. The microstructure of HgCdSe thin films grown by MBE on ZnTe/Si(112) and GaSb(112) substrates were investigated. The quality of the HgCdSe growth was dependent on the growth temperature and materials flux, independent of the substrate. The materials grown at 100°C were generally of high quality, while those grown at 140°C had {111}-type stacking defects and high dislocation densities. For epitaxial growth of HgCdSe on GaSb substrates, better preparation of the GaSb buffer layer will be essential in order to ensure that high-quality HgCdSe can be grown.
ContributorsZhao, Wenfeng (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha (Committee member) / Carpenter, Ray (Committee member) / Bennett, Peter (Committee member) / Treacy, Michael J. (Committee member) / Arizona State University (Publisher)
Created2011
150236-Thumbnail Image.png
Description
In-situ environmental transmission electron microscopy (ETEM) is a powerful tool for following the evolution of supported metal nanoparticles under different reacting gas conditions at elevated temperatures. The ability to observe the events in real time under reacting gas conditions can provide significant information on the fundamental processes taking place in

In-situ environmental transmission electron microscopy (ETEM) is a powerful tool for following the evolution of supported metal nanoparticles under different reacting gas conditions at elevated temperatures. The ability to observe the events in real time under reacting gas conditions can provide significant information on the fundamental processes taking place in catalytic materials, from which the performance of the catalyst can be understood. The first part of this dissertation presents the application of in-situ ETEM studies in developing structure-activity relationship in supported metal nanoparticles. In-situ ETEM studies on nanostructures in parallel with ex-situ reactor studies of conversions and selectivities were performed for partial oxidation of methane (POM) to syngas (CO+H2) on Ni/SiO2, Ru/SiO2 and NiRu/SiO2 catalysts. During POM, the gas composition varies along the catalyst bed with increasing temperature. It is important to consider these variations in gas composition in order to design experiments for in-situ ETEM. In-situ ETEM experiments were performed under three different reacting gas conditions. First in the presence of H2, this represents the state of the fresh catalyst for the catalytic reaction. Later in the presence of CH4 and O2 in 2:1 ratio, this is the composition of the reacting gases for the POM reaction and this composition acts as an oxidizing environment. Finally in the presence of CH4, this is the reducing gas. Oxidation and reduction behavior of Ni, Ru and NiRu nanoparticles were followed in an in-situ ETEM under reacting gas conditions and the observations were correlated with the performance of the catalyst for POM. The later part of the dissertation presents a technique for determining the gas compositional analysis inside the in-situ ETEM using electron energy-loss spectroscopy. Techniques were developed to identify the gas composition using both inner-shell and low-loss spectroscopy of EELS. Using EELS, an "operando TEM" technique was successfully developed for detecting the gas phase catalysis inside the ETEM. Overall this research demonstrates the importance of in-situ ETEM studies in understanding the structure-activity relationship in supported-metal catalysts for heterogeneous catalysis application.
ContributorsChenna, Santhosh (Author) / Crozier, Peter A. (Thesis advisor) / Carpenter, Ray (Committee member) / Sieradzki, Karl (Committee member) / Petuskey, William (Committee member) / Arizona State University (Publisher)
Created2011
150870-Thumbnail Image.png
Description
Soft magnetic alloys play a significant role for magnetic recording applications and highly sensitivity magnetic field sensors. In order to sustain the magnetic areal density growth, development of new synthesis techniques and materials is necessary. In this work, the effect of oxygen incorporation during electrodeposition of CoFe alloys on magnetic

Soft magnetic alloys play a significant role for magnetic recording applications and highly sensitivity magnetic field sensors. In order to sustain the magnetic areal density growth, development of new synthesis techniques and materials is necessary. In this work, the effect of oxygen incorporation during electrodeposition of CoFe alloys on magnetic properties, magnetoresistance and structural properties has been studied. Understanding the magnetic properties often required knowledge of oxygen distribution and structural properties of the grown films. Transmission electron microscopy (TEM) was a powerful tool in this study to correlate the oxygen-distribution nanostructure to the magnetic properties of deposited films. Off-axis electron holography in TEM was used to measure magnetic domain wall width in the deposited films. Elemental depth profiles of Fe, Co, O were investigated by secondary ion mass spectroscopy (SIMS). Magnetic properties have been determined by superconducting quantum interference device (SQUID) measurements. Oxygen content in the CoFe deposited films was controlled by electrolyte composition. Films were deposited on Si 100 substrates and on other substrates such as Cu and Al. However, a good film quality was achieved on Si substrate. Electron energy loss and x-ray spectroscopies showed that the low oxygen films contained intragranular Fe2+ oxide (FeO) particles and that the high oxygen films contained intergranular Fe3+ (Fe2O3) along grain boundaries. The films with oxide present at the grain boundary had significantly increased coercivity, magnetoresistance and reduced saturation magnetization relative to the lower oxygen content films with intragranular oxide. The differences in magnetic properties between low oxygen and high oxygen concentration films were attributed to stronger mobile domain wall interactions with the grain boundary oxide layers. The very high magnetoresistance values were achieved for magnetic devices with nanocontact dimension < 100 nm and oxide incorporation in this nanoconfined geometry. The content of oxide phase in nanocontact was controlled by concentration of the Fe3+ ions in the electrodeposition solution. Magnetic device integrity was improved by varying amount of additive into plating solution. These results indicated that electrodeposited CoFe nanocontact is a novel class of materials with large application for magnetic field sensors.
ContributorsElhalawaty, Shereen (Author) / Carpenter, Ray (Thesis advisor) / Chamberlin, Ralph (Committee member) / McCartney, Martha (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2012
150450-Thumbnail Image.png
Description
The goal of this research was to reduce dislocations and strain in high indium content bulk InGaN to improve quality for optical devices. In an attempt to achieve this goal, InGaN pillars were grown with compositions that matched the composition of the bulk InGaN grown on top. Pillar height and

The goal of this research was to reduce dislocations and strain in high indium content bulk InGaN to improve quality for optical devices. In an attempt to achieve this goal, InGaN pillars were grown with compositions that matched the composition of the bulk InGaN grown on top. Pillar height and density were optimized to facilitate coalescence on top of the pillars. It was expected that dislocations within the pillars would bend to side facets, thereby reducing the dislocation density in the bulk overgrowth, however this was not observed. It was also expected that pillars would be completely relaxed at the interface with the substrate. It was shown that pillars are mostly relaxed, but not completely. Mechanisms are proposed to explain why threading dislocations did not bend and how complete relaxation may have been achieved by mechanisms outside of interfacial misfit dislocation formation. Phase separation was not observed by TEM but may be related to the limitations of the sample or measurements. High indium observed at facets and stacking faults could be related to the extra photoluminescence peaks measured. This research focused on the InGaN pillars and first stages of coalescence on top of the pillars, saving bulk growth and device optimization for future research.
ContributorsMcFelea, Heather Dale (Author) / Mahajan, Subhash (Thesis advisor) / Arena, Chantal (Committee member) / Carpenter, Ray (Committee member) / Arizona State University (Publisher)
Created2011
156128-Thumbnail Image.png
Description
Polycrystalline magnetite thin films were deposited on large area polymer substrates using aqueous solution based spin-spray deposition (SSD). This technique involved the hydrolysis of precursor salt solutions at low temperatures (70-100°C). The fundamental mechanisms and pathways in crystallization and evolution of the film microstructures were studied as a function of

Polycrystalline magnetite thin films were deposited on large area polymer substrates using aqueous solution based spin-spray deposition (SSD). This technique involved the hydrolysis of precursor salt solutions at low temperatures (70-100°C). The fundamental mechanisms and pathways in crystallization and evolution of the film microstructures were studied as a function of reactant chemistry and reactor conditions (rotation rate, flow rates etc.). A key feature of this method was the ability to constantly supply fresh solutions throughout deposition. Solution flow due to substrate rotation ensured that reactant depleted solutions were spun off. This imparted a limited volume, near two-dimensional restriction on the growth process. Film microstructure was studied as a function of process parameters such as liquid flow rate, nebulizer configuration, platen rotation rate and solution chemistry. It was found that operating in the micro-droplet regime of deposition was a crucial factor in controlling the microstructure.

Film porosity and substrate adhesion were linked to the deposition rate, which in-turn depended on solution chemistry. Films exhibited a wide variety of hierarchically organized microstructures often spanning length scales from tens-of-nanometers to a few microns. These included anisotropic morphologies such as nanoplates and nanoblades, that were generally unexpected from magnetite (a high symmetry cubic solid). Time resolved studies showed that the reason for complex hierarchy in microstructure was the crystallization via non-classical pathways. SSD of magnetite films involved formation of precursor phases that subsequently underwent solid-state transformations and nanoparticle self-assembly. These precursor phases were identified and possible reaction mechanisms for the formation of magnetite were proposed. A qualitative description of the driving forces for self-assembly was presented.
ContributorsVadari Venkata, Kaushik Sridhar (Author) / Petuskey, William (Thesis advisor) / Carpenter, Ray (Committee member) / McCartney, Martha (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2018