Matching Items (25)
152182-Thumbnail Image.png
Description
There is a critical need for the development of clean and efficient energy sources. Hydrogen is being explored as a viable alternative to fuels in current use, many of which have limited availability and detrimental byproducts. Biological photo-production of H2 could provide a potential energy source directly manufactured from water

There is a critical need for the development of clean and efficient energy sources. Hydrogen is being explored as a viable alternative to fuels in current use, many of which have limited availability and detrimental byproducts. Biological photo-production of H2 could provide a potential energy source directly manufactured from water and sunlight. As a part of the photosynthetic electron transport chain (PETC) of the green algae Chlamydomonas reinhardtii, water is split via Photosystem II (PSII) and the electrons flow through a series of electron transfer cofactors in cytochrome b6f, plastocyanin and Photosystem I (PSI). The terminal electron acceptor of PSI is ferredoxin, from which electrons may be used to reduce NADP+ for metabolic purposes. Concomitant production of a H+ gradient allows production of energy for the cell. Under certain conditions and using the endogenous hydrogenase, excess protons and electrons from ferredoxin may be converted to molecular hydrogen. In this work it is demonstrated both that certain mutations near the quinone electron transfer cofactor in PSI can speed up electron transfer through the PETC, and also that a native [FeFe]-hydrogenase can be expressed in the C. reinhardtii chloroplast. Taken together, these research findings form the foundation for the design of a PSI-hydrogenase fusion for the direct and continuous photo-production of hydrogen in vivo.
ContributorsReifschneider, Kiera (Author) / Redding, Kevin (Thesis advisor) / Fromme, Petra (Committee member) / Jones, Anne (Committee member) / Arizona State University (Publisher)
Created2013
152375-Thumbnail Image.png
Description
The bleomycins are a family of glycopeptide-derived antibiotics isolated from various Streptomyces species and have been the subject of much attention from the scientific community as a consequence of their antitumor activity. Bleomycin clinically and is an integral part of a number of combination chemotherapy regimens. It has previously been

The bleomycins are a family of glycopeptide-derived antibiotics isolated from various Streptomyces species and have been the subject of much attention from the scientific community as a consequence of their antitumor activity. Bleomycin clinically and is an integral part of a number of combination chemotherapy regimens. It has previously been shown that bleomycin has the ability to selectively target tumor cells over their non-malignant counterparts. Pyrimidoblamic acid, the N-terminal metal ion binding domain of bleomycin is known to be the moiety that is responsible for O2 activation and the subsequent chemistry leading to DNA strand scission and overall antitumor activity. Chapter 1 describes bleomycin and related DNA targeting antitumor agents as well as the specific structural domains of bleomycin. Various structural analogues of pyrimidoblamic acid were synthesized and subsequently incorporated into their corresponding full deglycoBLM A6 derivatives by utilizing a solid support. Their activity was measured using a pSP64 DNA plasmid relaxation assay and is summarized in Chapter 2. The specifics of bleomycin—DNA interaction and kinetics were studied via surface plasmon resonance and are presented in Chapter 3. By utilizing carefully selected 64-nucleotide DNA hairpins with variable 16-mer regions whose sequences showed strong binding in past selection studies, a kinetic profile was obtained for several BLMs for the first time since bleomycin was discovered in 1966. The disaccharide moiety of bleomycin has been previously shown to be a specific tumor cell targeting element comprised of L-gulose-D-mannose, especially between MCF-7 (breast cancer cells) and MCF-10A ("normal" breast cells). This phenomenon was further investigated via fluorescence microscopy using multiple cancerous cell lines with matched "normal" counterparts and is fully described in Chapter 4.
ContributorsBozeman, Trevor C (Author) / Hecht, Sidney M. (Thesis advisor) / Chaput, John (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2013
152761-Thumbnail Image.png
Description
Telomerase is a unique reverse transcriptase that has evolved specifically to extend the single stranded DNA at the 3' ends of chromosomes. To achieve this, telomerase uses a small section of its integral RNA subunit (TR) to reiteratively copy a short, canonically 6-nt, sequence repeatedly in a processive manner using

Telomerase is a unique reverse transcriptase that has evolved specifically to extend the single stranded DNA at the 3' ends of chromosomes. To achieve this, telomerase uses a small section of its integral RNA subunit (TR) to reiteratively copy a short, canonically 6-nt, sequence repeatedly in a processive manner using a complex and currently poorly understood mechanism of template translocation to stop nucleotide addition, regenerate its template, and then synthesize a new repeat. In this study, several novel interactions between the telomerase protein and RNA components along with the DNA substrate are identified and characterized which come together to allow active telomerase repeat addition. First, this study shows that the sequence of the RNA/DNA duplex holds a unique, single nucleotide signal which pauses DNA synthesis at the end of the canonical template sequence. Further characterization of this sequence dependent pause signal reveals that the template sequence alone can produce telomerase products with the characteristic 6-nt pattern, but also works cooperatively with another RNA structural element for proper template boundary definition. Finally, mutational analysis is used on several regions of the protein and RNA components of telomerase to identify crucial determinates of telomerase assembly and processive repeat synthesis. Together, these results shed new light on how telomerase coordinates its complex catalytic cycle.
ContributorsBrown, Andrew F (Author) / Chen, Julian J. L. (Thesis advisor) / Jones, Anne (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2014
152944-Thumbnail Image.png
Description
Protein affinity reagents have aptly gained profound importance as capture reagents and

drugs in basic research, biotechnology, diagnostics and therapeutics. However, due to the

cost, labor and time associated with production of antibodies focus has recently changed

towards potential of peptides to act as protein affinity reagents.

Protein affinity reagents have aptly gained profound importance as capture reagents and

drugs in basic research, biotechnology, diagnostics and therapeutics. However, due to the

cost, labor and time associated with production of antibodies focus has recently changed

towards potential of peptides to act as protein affinity reagents. Affinity peptides are easy

to work with, non-immunogenic, cost effective and amenable to scale up. Even though

researchers have developed several affinity peptides, we are far from compiling library of

peptides that encompasses entire human proteome. My thesis describes high throughput

pipeline that can be used to develop and characterize affinity peptides that bind several

discrete sites on target proteins.

Chapter 2 describes optimization of cell-free protein expression using commercially

available translation systems and well-known leader sequences. Presence of internal

ribosome entry site upstream of coding region allows maximal expression in HeLa cell

lysate whereas translation enhancing elements are best suited for expression in rabbit

reticulocyte lysate and wheat germ extract. Use of optimal vector and cell lysate

combination ensures maximum protein expression of DNA libraries.

Chapter 3 describes mRNA display selection methodology for developing affinity peptides

for target proteins using large diversity DNA libraries. I demonstrate that mild denaturant

is not sufficient to increase selection pressure for up to three rounds of selection and

increasing number of selection rounds increases probability of finding affinity peptide s.

These studies enhance fundamental understanding of mRNA display and pave the way

for future optimizations to accelerate convergence of in vitro selections.

Chapter 4 describes a high throughput double membrane dot blot system to rapidly

screen, identify and characterize affinity peptides obtained from selection output. I used

dot blot to screen potential affinity peptides from large diversity of previously

ii

uncharacterized mRNA display selection output. Further characterization of potential

peptides allowed determination of several high affinity peptides from having Kd range 150-

450 nM. Double membrane dot blot is automation amenable, easy and affordable solution

for analyzing selection output and characterizing peptides without ne ed for much

instrumentation.

Together these projects serve as guideline for evolution of cost effective high throughput

pipeline for identification and characterization of affinity peptides.
ContributorsShah, Pankti (Author) / Chaput, John (Thesis advisor) / Hecht, Sidney (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2014
152875-Thumbnail Image.png
Description
Protein-surface interactions, no matter structured or unstructured, are important in both biological and man-made systems. Unstructured interactions are more difficult to study with conventional techniques due to the lack of a specific binding structure. In this dissertation, a novel approach is employed to study the unstructured interactions between proteins and

Protein-surface interactions, no matter structured or unstructured, are important in both biological and man-made systems. Unstructured interactions are more difficult to study with conventional techniques due to the lack of a specific binding structure. In this dissertation, a novel approach is employed to study the unstructured interactions between proteins and heterogonous surfaces, by looking at a large number of different binding partners at surfaces and using the binding information to understand the chemistry of binding. In this regard, surface-bound peptide arrays are used as a model for the study. Specifically, in Chapter 2, the effects of charge, hydrophobicity and length of surface-bound peptides on binding affinity for specific globular proteins (&beta-galactosidase and &alpha1-antitrypsin) and relative binding of different proteins were examined with LC Sciences peptide array platform. While the general charge and hydrophobicity of the peptides are certainly important, more surprising is that &beta-galactosidase affinity for the surface does not simply increase with the length of the peptide. Another interesting observation that leads to the next part of the study is that even very short surface-bound peptides can have both strong and selective interactions with proteins. Hence, in Chapter 3, selected tetrapeptide sequences with known binding characteristics to &beta-galactosidase are used as building blocks to create longer sequences to see if the binding function can be added together. The conclusion is that while adding two component sequences together can either greatly increase or decrease overall binding and specificity, the contribution to the binding affinity and specificity of the individual binding components is strongly dependent on their position in the peptide. Finally, in Chapter 4, another array platform is utilized to overcome the limitations associated with LC Sciences. It is found that effects of peptide sequence properties on IgG binding with HealthTell array are quiet similar to what was observed with &beta-galactosidase on LC Science array surface. In summary, the approach presented in this dissertation can provide binding information for both structured and unstructured interactions taking place at complex surfaces and has the potential to help develop surfaces covered with specific short peptide sequences with relatively specific protein interaction profiles.
ContributorsWang, Wei (Author) / Woodbury, Neal W (Thesis advisor) / Liu, Yan (Committee member) / Chaput, John (Committee member) / Arizona State University (Publisher)
Created2014
153119-Thumbnail Image.png
Description
The communication of genetic material with biomolecules has been a major interest in cancer biology research for decades. Among its different levels of involvement, DNA is known to be a target of several antitumor agents. Additionally, tissue specific interaction between macromolecules such as proteins and structurally important regions of DNA

The communication of genetic material with biomolecules has been a major interest in cancer biology research for decades. Among its different levels of involvement, DNA is known to be a target of several antitumor agents. Additionally, tissue specific interaction between macromolecules such as proteins and structurally important regions of DNA has been reported to define the onset of certain types of cancers.

Illustrated in Chapter 1 is the general history of research on the interaction of DNA and anticancer drugs, most importantly different congener of bleomycin (BLM). Additionally, several synthetic analogues of bleomycin, including the structural components and functionalities, are discussed.

Chapter 2 describes a new approach to study the double-strand DNA lesion caused by antitumor drug bleomycin. The hairpin DNA library used in this study displays numerous cleavage sites demonstrating the versatility of bleomycin interaction with DNA. Interestingly, some of those cleavage sites suggest a novel mechanism of bleomycin interaction, which has not been reported before.

Cytidine methylation has generally been found to decrease site-specific cleavage of DNA by BLM, possibly due to structural change and subsequent reduced bleomycin-mediated recognition of DNA. As illustrated in Chapter 3, three hairpin DNAs known to be strongly bound by bleomycin, and their methylated counterparts, were used to study the dynamics of bleomycin-induced degradation of DNAs in cancer cells. Interestingly, cytidine methylation on one of the DNAs has also shown a major shift in the intensity of bleomycin induced double-strand DNA cleavage pattern, which is known to be a more potent form of bleomycin induced cleavages.

DNA secondary structures are known to play important roles in gene regulation. Chapter 4 demonstrates a structural change of the BCL2 promoter element as a result of its dynamic interaction with the individual domains of hnRNP LL, which is essential to facilitate the transcription of BCL2. Furthermore, an in vitro protein synthesis technique has been employed to study the dynamic interaction between protein domains and the i-motif DNA within the promoter element. Several constructs were made involving replacement of a single amino acid with a fluorescent analogue, and these were used to study FRET between domain 1 and the i-motif, the later of which harbored a fluorescent acceptor nucleotide analogue.
ContributorsRoy, Basab (Author) / Hecht, Sidney M. (Thesis advisor) / Jones, Anne (Committee member) / Levitus, Marcia (Committee member) / Chaput, John (Committee member) / Arizona State University (Publisher)
Created2014
152441-Thumbnail Image.png
Description
Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified

Gold-silver alloy nanoparticles (NPs) capped with adenosine 5'-triphosphate were synthesized by borohydride reduction of dilute aqueous metal precursors. High-resolution transmission electron microscopy showed the as-synthesized particles to be spherical with average diameters ~4 nm. Optical properties were measured by UV-Visible spectroscopy (UV-Vis), and the formation of alloy NPs was verified across all gold:silver ratios by a linear shift in the plasmon band maxima against alloy composition. The molar absorptivities of the NPs decreased non-linearly with increasing gold content from 2.0 x 108 M-1 cm-1 (fÉmax = 404 nm) for pure silver to 4.1 x 107 M-1 cm-1 (fÉmax = 511 nm) for pure gold. The NPs were immobilized onto transparent indium-tin oxide composite electrodes using layer-by-layer (LbL) deposition with poly(diallyldimethylammonium) acting as a cationic binder. The UV-Vis absorbance of the LbL film was used to calculate the surface coverage of alloy NPs on the electrode. Typical preparations had average NP surface coverages of 2.8 x 10-13 mol NPs/cm2 (~5% of cubic closest packing) with saturated films reaching ~20% of ccp for single-layer preparations (1.0 ~ 10-12 mol NPs/cm2). X-ray photoelectron spectroscopy confirmed the presence of alloy NPs in the LbL film and showed silver enrichment of the NP surfaces by ~9%. Irreversible oxidative dissolution (dealloying) of the less noble silver atoms from the NPs on LbL electrodes was performed by cyclic voltammetry (CV) in sulfuric acid. Alloy NPs with higher gold content required larger overpotentials for silver dealloying. Dealloying of the more-noble gold atoms from the alloy NPs was also achieved by CV in sodium chloride. The silver was oxidized first to cohesive silver chloride, and then gold dealloyed to soluble HAuCl4- at higher potentials. Silver oxidation was inhibited during the first oxidative scan, but subsequent cycles showed typical, reversible silver-to-silver chloride voltammetry. The potentials for both silver oxidation and gold dealloying also shifted to more oxidizing potentials with increasing gold content, and both processes converged for alloy NPs with >60% gold content. Charge-mediated electrochemistry of silver NPs immobilized in LbL films, using Fc(meOH) as the charge carrier, showed that 67% of the NPs were electrochemically inactive.
ContributorsStarr, Christopher A (Author) / Buttry, Daniel A (Thesis advisor) / Petuskey, William (Committee member) / Jones, Anne (Committee member) / Arizona State University (Publisher)
Created2014
150554-Thumbnail Image.png
Description
Hydrogenases catalyze the interconversion of protons, electrons, and hydrogen according to the reaction: 2H+ + 2e- <-> H2 while using only earth abundant metals, namely nickel and iron for catalysis. The enzymatic turnover of Clostridium acetobutylicum [FeFe]-hydrogenase has been investigated through the use of electrochemical and scanning probe techniques. Scanning

Hydrogenases catalyze the interconversion of protons, electrons, and hydrogen according to the reaction: 2H+ + 2e- <-> H2 while using only earth abundant metals, namely nickel and iron for catalysis. The enzymatic turnover of Clostridium acetobutylicum [FeFe]-hydrogenase has been investigated through the use of electrochemical and scanning probe techniques. Scanning tunneling microscopy (STM) imaging revealed sub-monolayer surface coverage. Cyclic voltammetry yielded a catalytic, cathodic hydrogen production signal similar to that observed for a platinum electrode. From the direct observation of single enzymes and the macroscopic electrochemical measurements obtained from the same electrode, the apparent turnover frequency (TOF) per single enzyme molecule as a function of potential was determined. The TOF at 0.7 V vs. Ag/AgCl for the four SAMs yielded a decay constant for electronic coupling (β) through the SAM of ~ 0.82 Å -1, in excellent agreement with published values for similar SAMs. One mechanism used by plants to protect against damage is called nonphotochemical quenching (NPQ). Triggered by low pH in the thylakoid lumen, NPQ leads to conversion of excess excitation energy in the antenna system to heat before it can initiate production of harmful chemical species by photosynthetic reaction centers. Here a synthetic hexad molecule that functionally mimics the role of the antenna in NPQ is described. When the hexad is dissolved in an organic solvent, five zinc porphyrin antenna moieties absorb light, exchange excitation energy, and ultimately decay by normal photophysical processes. However, when acid is added, a pH-sensitive dye moiety is converted to a form that rapidly quenches the first excited singlet states of all five porphyrins, converting the excitation energy to heat and rendering the porphyrins kinetically incompetent to perform useful photochemistry. Charge transport was also studied in single-molecule junctions formed with a 1,7-pyrrolidine-substituted 3,4,9,10-Perylenetetracarboxylic diimide (PTCDI) molecule. A reduction in the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals energy gap due to the electronic properties of the substituents is seen when compared to an unsubstituted-PTCDI. The small HOMO-LUMO energy gap allows for switching between electron- and hole-dominated charge transport with a gate voltage, thus demonstrating a single-molecule ambipolar field effect transistor.
ContributorsMadden, Christopher (Author) / Moore, Thomas A. (Thesis advisor) / Jones, Anne (Committee member) / Tao, Nongjian (Committee member) / Arizona State University (Publisher)
Created2012
151257-Thumbnail Image.png
Description
The heliobacterial reaction center (HbRC) is widely considered the simplest and most primitive photosynthetic reaction center (RC) still in existence. Despite the simplicity of the HbRC, many aspects of the electron transfer mechanism remain unknown or under debate. Improving our understanding of the structure and function of the HbRC is

The heliobacterial reaction center (HbRC) is widely considered the simplest and most primitive photosynthetic reaction center (RC) still in existence. Despite the simplicity of the HbRC, many aspects of the electron transfer mechanism remain unknown or under debate. Improving our understanding of the structure and function of the HbRC is important in determining its role in the evolution of photosynthetic RCs. In this work, the function and properties of the iron-sulfur cluster FX and quinones of the HbRC were investigated, as these are the characteristic terminal electron acceptors used by Type-I and Type-II RCs, respectively. In Chapter 3, I develop a system to directly detect quinone double reduction activity using reverse-phase high pressure liquid chromatography (RP-HPLC), showing that Photosystem I (PSI) can reduce PQ to PQH2. In Chapter 4, I use RP-HPLC to characterize the HbRC, showing a surprisingly small antenna size and confirming the presence of menaquinone (MQ) in the isolated HbRC. The terminal electron acceptor FX was characterized spectroscopically and electrochemically in Chapter 5. I used three new systems to reduce FX in the HbRC, using EPR to confirm a S=3/2 ground-state for the reduced cluster. The midpoint potential of FX determined through thin film voltammetry was -372 mV, showing the cluster is much less reducing than previously expected. In Chapter 7, I show light-driven reduction of menaquinone in heliobacterial membrane samples using only mild chemical reductants. Finally, I discuss the evolutionary implications of these findings in Chapter 7.
ContributorsCowgill, John (Author) / Redding, Kevin (Thesis advisor) / Jones, Anne (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2012
149963-Thumbnail Image.png
Description
Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group,

Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group, filamentous fungi, is presented. Based on phylogenetic analysis of 69 TER sequences and mutagenesis analysis of in vitro reconstituted Neurospora telomerase, we discovered a conserved functional core in filamentous fungal TERs sharing homologous structural features with vertebrate TERs. This core contains the template-pseudoknot and P6/P6.1 domains, essential for enzymatic activity, which retain function in trans. The in vitro reconstituted Neurospora telomerase is highly processive, synthesizing canonical TTAGGG repeats. Similar to Schizosaccharomycetes pombe, filamentous fungal TERs utilize the spliceosomal splicing machinery for 3' processing. Neurospora telomerase, while associating with the Est1 protein in vivo, does not bind homologous Ku or Sm proteins found in both budding and fission yeast telomerase holoenzyme, suggesting a unique biogenesis pathway. The development of Neurospora as a model organism to study telomeres and telomerase may shed light upon the evolution of the canonical TTAGGG telomeric repeat and telomerase processivity within fungal species.
ContributorsQi, Xiaodong (Author) / Chen, Julian (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Chaput, John (Committee member) / Arizona State University (Publisher)
Created2011