Matching Items (36)
152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
151698-Thumbnail Image.png
Description
Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities [1], however; there is no patient-centric information available to the patient

Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities [1], however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical organs across all input data scenarios which are corresponding to the positioning and size of the organs. The computational results indicate up to 26% increase in the absorbed dose calculated for the robust approach which ensures the feasibility across scenarios.
ContributorsKhodadadegan, Yasaman (Author) / Zhang, Muhong (Thesis advisor) / Pavlicek, William (Thesis advisor) / Fowler, John (Committee member) / Wu, Tong (Committee member) / Arizona State University (Publisher)
Created2013
152246-Thumbnail Image.png
Description
Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the

Smoke entering a flight deck cabin has been an issue for commercial aircraft for many years. The issue for a flight crew is how to mitigate the smoke so that they can safely fly the aircraft. For this thesis, the feasibility of having a Negative Pressure System that utilizes the cabin altitude pressure and outside altitude pressure to remove smoke from a flight deck was studied. Existing procedures for flight crews call for a descent down to a safe level for depressurizing the aircraft before taking further action. This process takes crucial time that is critical to the flight crew's ability to keep aware of the situation. This process involves a flight crews coordination and fast thinking to manually take control of the aircraft; which has become increasing more difficult due to the advancements in aircraft automation. Unfortunately this is the only accepted procedure that is used by a flight crew. Other products merely displace the smoke. This displacement is after the time it takes for the flight crew to set up the smoke displacement unit with no guarantee that a flight crew will be able to see or use all of the aircraft's controls. The Negative Pressure System will work automatically and not only use similar components already found on the aircraft, but work in conjunction with the smoke detection system and pressurization system so smoke removal can begin without having to descend down to a lower altitude. In order for this system to work correctly many factors must be taken into consideration. The size of a flight deck varies from aircraft to aircraft, therefore the ability for the system to efficiently remove smoke from an aircraft is taken into consideration. For the system to be feasible on an aircraft the cost and weight must be taken into consideration as the added fuel consumption due to weight of the system may be the limiting factor for installing such a system on commercial aircraft.
ContributorsDavies, Russell (Author) / Rogers, Bradley (Thesis advisor) / Palmgren, Dale (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2013
151455-Thumbnail Image.png
Description
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving

Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focusses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.
ContributorsMoncada, Albert (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Yekani Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2012
151511-Thumbnail Image.png
Description
With the increase in computing power and availability of data, there has never been a greater need to understand data and make decisions from it. Traditional statistical techniques may not be adequate to handle the size of today's data or the complexities of the information hidden within the data. Thus

With the increase in computing power and availability of data, there has never been a greater need to understand data and make decisions from it. Traditional statistical techniques may not be adequate to handle the size of today's data or the complexities of the information hidden within the data. Thus knowledge discovery by machine learning techniques is necessary if we want to better understand information from data. In this dissertation, we explore the topics of asymmetric loss and asymmetric data in machine learning and propose new algorithms as solutions to some of the problems in these topics. We also studied variable selection of matched data sets and proposed a solution when there is non-linearity in the matched data. The research is divided into three parts. The first part addresses the problem of asymmetric loss. A proposed asymmetric support vector machine (aSVM) is used to predict specific classes with high accuracy. aSVM was shown to produce higher precision than a regular SVM. The second part addresses asymmetric data sets where variables are only predictive for a subset of the predictor classes. Asymmetric Random Forest (ARF) was proposed to detect these kinds of variables. The third part explores variable selection for matched data sets. Matched Random Forest (MRF) was proposed to find variables that are able to distinguish case and control without the restrictions that exists in linear models. MRF detects variables that are able to distinguish case and control even in the presence of interaction and qualitative variables.
ContributorsKoh, Derek (Author) / Runger, George C. (Thesis advisor) / Wu, Tong (Committee member) / Pan, Rong (Committee member) / Cesta, John (Committee member) / Arizona State University (Publisher)
Created2013
152962-Thumbnail Image.png
Description
This research focuses on the benefits of using nanocomposites in aerospace structural components to prevent or delay the onset of unique composite failure modes, such as delamination. Analytical, numerical, and experimental analyses were conducted to provide a comprehensive understanding of how carbon nanotubes (CNTs) can provide additional structural integrity when

This research focuses on the benefits of using nanocomposites in aerospace structural components to prevent or delay the onset of unique composite failure modes, such as delamination. Analytical, numerical, and experimental analyses were conducted to provide a comprehensive understanding of how carbon nanotubes (CNTs) can provide additional structural integrity when they are used in specific hot spots within a structure. A multiscale approach was implemented to determine the mechanical and thermal properties of the nanocomposites, which were used in detailed finite element models (FEMs) to analyze interlaminar failures in T and Hat section stringers. The delamination that first occurs between the tow filler and the bondline between the stringer and skin was of particular interest. Both locations are considered to be hot spots in such structural components, and failures tend to initiate from these areas. In this research, nanocomposite use was investigated as an alternative to traditional methods of suppressing delamination. The stringer was analyzed under different loading conditions and assuming different structural defects. Initial damage, defined as the first drop in the load displacement curve was considered to be a useful variable to compare the different behaviors in this study and was detected via the virtual crack closure technique (VCCT) implemented in the FE analysis.

Experiments were conducted to test T section skin/stringer specimens under pull-off loading, replicating those used in composite panels as stiffeners. Two types of designs were considered: one using pure epoxy to fill the tow region and another that used nanocomposite with 5 wt. % CNTs. The response variable in the tests was the initial damage. Detailed analyses were conducted using FEMs to correlate with the experimental data. The correlation between both the experiment and model was satisfactory. Finally, the effects of thermal cure and temperature variation on nanocomposite structure behavior were studied, and both variables were determined to influence the nanocomposite structure performance.
ContributorsHasan, Zeaid (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Rajadas, John (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
152982-Thumbnail Image.png
Description
Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range

Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range of sensors and detection techniques, for both metallic materials and composites. However, detecting damage at the microscale is not possible with commercially available sensors. A probable way to approach this problem is through accurate and efficient multiscale modeling techniques, which are capable of tracking damage initiation at the microscale and propagation across the length scales. The output from these models will provide an improved understanding of damage initiation; the knowledge can be used in conjunction with information from physical sensors to improve the size of detectable damage. In this research, effort has been dedicated to develop multiscale modeling approaches and associated damage criteria for the estimation of damage evolution across the relevant length scales. Important issues such as length and time scales, anisotropy and variability in material properties at the microscale, and response under mechanical and thermal loading are addressed. Two different material systems have been studied: metallic material and a novel stress-sensitive epoxy polymer.

For metallic material (Al 2024-T351), the methodology initiates at the microscale where extensive material characterization is conducted to capture the microstructural variability. A statistical volume element (SVE) model is constructed to represent the material properties. Geometric and crystallographic features including grain orientation, misorientation, size, shape, principal axis direction and aspect ratio are captured. This SVE model provides a computationally efficient alternative to traditional techniques using representative volume element (RVE) models while maintaining statistical accuracy. A physics based multiscale damage criterion is developed to simulate the fatigue crack initiation. The crack growth rate and probable directions are estimated simultaneously.

Mechanically sensitive materials that exhibit specific chemical reactions upon external loading are currently being investigated for self-sensing applications. The "smart" polymer modeled in this research consists of epoxy resin, hardener, and a stress-sensitive material called mechanophore The mechanophore activation is based on covalent bond-breaking induced by external stimuli; this feature can be used for material-level damage detections. In this work Tris-(Cinnamoyl oxymethyl)-Ethane (TCE) is used as the cyclobutane-based mechanophore (stress-sensitive) material in the polymer matrix. The TCE embedded polymers have shown promising results in early damage detection through mechanically induced fluorescence. A spring-bead based network model, which bridges nanoscale information to higher length scales, has been developed to model this material system. The material is partitioned into discrete mass beads which are linked using linear springs at the microscale. A series of MD simulations were performed to define the spring stiffness in the statistical network model. By integrating multiple spring-bead models a network model has been developed to represent the material properties at the mesoscale. The model captures the statistical distribution of crosslinking degree of the polymer to represent the heterogeneous material properties at the microscale. The developed multiscale methodology is computationally efficient and provides a possible means to bridge multiple length scales (from 10 nm in MD simulation to 10 mm in FE model) without significant loss of accuracy. Parametric studies have been conducted to investigate the influence of the crosslinking degree on the material behavior. The developed methodology has been used to evaluate damage evolution in the self-sensing polymer.
ContributorsZhang, Jinjun (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2014
153470-Thumbnail Image.png
Description
Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from this research will enable to optimize the number of transparent

Research was conducted to observe the effect of Number of Transparent Covers and Refractive Index on performance of a domestic Solar Water heating system. The enhancement of efficiency for solar thermal system is an emerging challenge. The knowledge gained from this research will enable to optimize the number of transparent covers and refractive index prior to develop a solar water heater with improved optical efficiency and thermal efficiency for the collector. Numerical simulation is conducted on the performance of the liquid flat plate collector for July 21st and October 21st from 8 am to 4 pm with different refractive index values 1.1, 1.4, 1.7 and different numbers of transparent covers (0-3). In order to accomplish the proposed method the formulation and solutions are executed using simple software MATLAB. The result demonstrates efficiency of flat plate collector increases with the increase of number of covers. The performance of collector decreases when refractive index is higher. The improved useful heat gain is obtained when number of cover used is 3 and refractive index is 1.1.
ContributorsSupriti, Shahina Parvin (Author) / Rogers, Bradley (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2015
Description
In this work, the hydrodynamics of Suction Stabilization is studied. Suction stabilization was found to stabilize floating platforms/floats in a much better way as compared to the conventional methods. This was achieved by an effective increment in the metacentric height due to the Inverse Slack Tank (IST) effect. The

In this work, the hydrodynamics of Suction Stabilization is studied. Suction stabilization was found to stabilize floating platforms/floats in a much better way as compared to the conventional methods. This was achieved by an effective increment in the metacentric height due to the Inverse Slack Tank (IST) effect. The study involves the analysis of the existing designs and optimizing its performance. This research investigates the stability of such floats and the hydrodynamic forces acting on the same for offshore applications, such as wind turbines. A simple mathematical model for the condition of parametric resonance is developed and the results are verified, both analytically and experimentally.
ContributorsCherangara Subramanian, Susheelkumar (Author) / Redkar, Sangram (Thesis advisor) / Rajadas, John (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2014
150196-Thumbnail Image.png
Description
Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel

Advanced composites are being widely used in aerospace applications due to their high stiffness, strength and energy absorption capabilities. However, the assurance of structural reliability is a critical issue because a damage event will compromise the integrity of composite structures and lead to ultimate failure. In this dissertation a novel homogenization based multiscale modeling framework using semi-analytical micromechanics is presented to simulate the response of textile composites. The novelty of this approach lies in the three scale homogenization/localization framework bridging between the constituent (micro), the fiber tow scale (meso), weave scale (macro), and the global response. The multiscale framework, named Multiscale Generalized Method of Cells (MSGMC), continuously bridges between the micro to the global scale as opposed to approaches that are top-down and bottom-up. This framework is fully generalized and capable of modeling several different weave and braids without reformulation. Particular emphasis in this dissertation is placed on modeling the nonlinearity and failure of both polymer matrix and ceramic matrix composites.
ContributorsLiu, Guang (Author) / Chattopadhyay, Aditi (Thesis advisor) / Mignolet, Marc (Committee member) / Jiang, Hanqing (Committee member) / Li, Jian (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011