Matching Items (27)

132193-Thumbnail Image.png

The Capon-Bartlett Cross Spectrum Resolution Study

Description

Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts

Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts to miss crucial details surrounding the data. The Capon and Bartlett methods are non-parametric filterbank approaches to power spectrum estimation. The Capon algorithm is known as the "adaptive" approach to power spectrum estimation because its filter impulse responses are adapted to fit the characteristics of the data. The Bartlett method is known as the "conventional" approach to power spectrum estimation (PSE) and has a fixed deterministic filter. Both techniques rely on the Sample Covariance Matrix (SCM). The first objective of this project is to analyze the origins and characteristics of the Capon and Bartlett methods to understand their abilities to resolve signals closely spaced in frequency. Taking into consideration the Capon and Bartlett's reliance on the SCM, there is a novelty in combining these two algorithms using their cross-coherence. The second objective of this project is to analyze the performance of the Capon-Bartlett Cross Spectra. This study will involve Matlab simulations of known test cases and comparisons with approximate theoretical predictions.

Contributors

Agent

Created

Date Created
  • 2019-05

131166-Thumbnail Image.png

Adaptive Radar Matched Filter Saddlepoint Approximation Study

Description

Radar systems seek to detect targets in some search space (e.g. volume of airspace, or area on the ground surface) by actively illuminating the environment with radio waves. This illumination

Radar systems seek to detect targets in some search space (e.g. volume of airspace, or area on the ground surface) by actively illuminating the environment with radio waves. This illumination yields a return from targets of interest as well as highly reflective terrain features that perhaps are not of interest (called clutter). Data adaptive algorithms are therefore employed to provide robust detection of targets against a background of clutter and other forms of interference. The adaptive matched filter (AMF) is an effective, well-established detection statistic whose exact probability density function (PDF) is known under prevalent radar system model assumptions. Variations of this approach, however, lead to tests whose PDFs remain unknown or incalculable. This project will study the effectiveness of saddlepoint methods applied to approximate the known pdf of the clairvoyant matched filter, using MATLAB to complete the numerical calculations. Specifically, the approximation was used to compute tail probabilities for a range of thresholds, as well as compute the threshold and probability of detection for a specific desired probability of false alarm. This was compared to the same values computed using the known exact PDF of the filter, with the comparison demonstrating high levels of accuracy for the saddlepoint approximation. The results are encouraging, and justify further study of the approximation as applied to more strained or complicated scenarios.

Contributors

Agent

Created

Date Created
  • 2020-05

155804-Thumbnail Image.png

Development of Multiple Protocols in Novel Simulation Environment

Description

When one considers the current state of wireless communications, it becomes clear that it is both absolutely amazing and something of a mess. Present communications standards are the result of

When one considers the current state of wireless communications, it becomes clear that it is both absolutely amazing and something of a mess. Present communications standards are the result of local optimizations over time that led to a confusing set of suboptimal and fragile wireless standards. Starting from a clean sheet of paper, Bliss Laboratory for Information, Signals, and Systems (BLISS) is considering a fluid set of communications standards co-optimized with flexible but power-efficient computational implementations that will enable the next revolution of wireless communications. The main aim is to enable much higher data rates and much lower data rates with corresponding lower power consumption as the needs of the users vary.

The thesis mainly looks at the different sections of the work done, to prime the development of the protocol development engine. It discusses channel modeling, and system integration of receiver and channel noise. It also proposes a Carrier-Sense Multiple Access (CSMA) Media Access Control (MAC) layer protocol implementation for (Wireless Fidelity) Wi-Fi protocol. This work also talks about the Graphical User Interface (GUI), which is a part of Protocol Development Kit (PDK) - a combination of the Protocol Recommendation Engine (PRE) and simulation package to aid the development of protocols. It also sheds light on the Automatic Dependent Surveillance - Broadcast (ADS-B) radio protocol, that will eventually replace radar as Air Traffic Control's (ATC) primary tool for separating aircraft.

All the algorithms used in this thesis, to define radio operation were in principle defined by mathematical descriptions; however, to test and implement these algorithms they had to be converted to a computer language. There were multiple phases of this conversion. In the first phase, the implementation of these algorithms was done in Matrix Laboratory (MATLAB). To aid this development, basic radio finite state machines and radio algorithmic tools were provided.

Contributors

Agent

Created

Date Created
  • 2017

156646-Thumbnail Image.png

Channel Estimation in Half and Full Duplex Relays

Description

Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth

Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are the key components for the implementation and the performance of the FD TWR system, making channel estimation in FD TWRs crucial.

The impact of channel estimation on spectral efficiency in half-duplex multiple-input-multiple-output (MIMO) TWR systems is investigated. The trade-off between training and data energy is proposed. In the case that two sources are symmetric in power and number of antennas, a closed-form for the optimal ratio of data energy to total energy is derived. It can be shown that the achievable rate is a monotonically increasing function of the data length. The asymmetric case is discussed as well.

Efficient and accurate training schemes for FD TWRs are essential for profiting from the inherent spectrally efficient structures of both FD and TWRs. A novel one-block training scheme with a maximum likelihood (ML) estimator is proposed to estimate the channels between the nodes and the residual self-interference (RSI) channel simultaneously. Baseline training schemes are also considered to compare with the one-block scheme. The Cramer-Rao bounds (CRBs) of the training schemes are derived and analyzed by using the asymptotic properties of Toeplitz matrices. The benefit of estimating the RSI channel is shown analytically in terms of Fisher information.

To obtain fundamental and analytic results of how the RSI affects the spectral efficiency, one-way FD relay systems are studied. Optimal training design and ML channel estimation are proposed to estimate the RSI channel. The CRBs are derived and analyzed in closed-form so that the optimal training sequence can be found via minimizing the CRB. Extensions of the training scheme to frequency-selective channels and multiple relays are also presented.

Simultaneously sensing and transmission in an FD cognitive radio system with MIMO is considered. The trade-off between the transmission rate and the detection accuracy is characterized by the sum-rate of the primary and the secondary users. Different beamforming and combining schemes are proposed and compared.

Contributors

Agent

Created

Date Created
  • 2018

158254-Thumbnail Image.png

Theoretical Receiver Operating Characteristics of Two-Stage Change Detector for Synthetic Aperture Radar Images

Description

Detecting areas of change between two synthetic aperture radar (SAR) images of the same scene, taken at different times is generally performed using two approaches. Non-coherent change detection is performed

Detecting areas of change between two synthetic aperture radar (SAR) images of the same scene, taken at different times is generally performed using two approaches. Non-coherent change detection is performed using the sample variance ratio detector, and displays a good performance in detecting areas of significant changes. Coherent change detection can be implemented using the classical coherence estimator, which does better at detecting subtle changes, like vehicle tracks. A two-stage detector was proposed by Cha et al., where the sample variance ratio forms the first stage, and the second stage comprises of Berger's alternative coherence estimator.

A modification to the first stage of the two-stage detector is proposed in this study, which significantly simplifies the analysis of the this detector. Cha et al. have used a heuristic approach to determine the thresholds for this two-stage detector. In this study, the probability density function for the modified two-stage detector is derived, and using this probability density function, an approach for determining the thresholds for this two-dimensional detection problem has been proposed. The proposed method of threshold selection reveals an interesting behavior shown by the two-stage detector. With the help of theoretical receiver operating characteristic analysis, it is shown that the two-stage detector gives a better detection performance as compared to the other three detectors. However, the Berger's estimator proves to be a simpler alternative, since it gives only a slightly poorer performance as compared to the two-stage detector. All the four detectors have also been implemented on a SAR data set, and it is shown that the two-stage detector and the Berger's estimator generate images where the areas showing change are easily visible.

Contributors

Agent

Created

Date Created
  • 2020

157757-Thumbnail Image.png

Software defined pulse-doppler radar for over-the-air applications: the joint radar-communications experiment

Description

In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it

In this paper, the Software Defined Radio (SDR) platform is considered for building a pseudo-monostatic, 100MHz Pulse-Doppler radar. The SDR platform has many benefits for experimental communications systems as it offers relatively cheap, parametrically dynamic, off-the-shelf access to the Radiofrequency (RF) spectrum. For this application, the Universal Software Radio Peripheral (USRP) X310 hardware package is utilized with GNURadio for interfacing to the device and Matlab for signal post- processing. Pulse doppler radar processing is used to ascertain the range and velocity of a target considered in simulation and in real, over-the-air (OTA) experiments. The USRP platform offers a scalable and dynamic hardware package that can, with relatively low overhead, be incorporated into other experimental systems. This radar system will be considered for implementation into existing over-the-air Joint Radar- Communications (JRC) spectrum sharing experiments. The JRC system considers a co-designed architecture in which a communications user and a radar user share the same spectral allocation. Where the two systems would traditionally consider one another a source of interference, the receiver is able to decode communications information and discern target information via pulse-doppler radar simultaneously.

Contributors

Agent

Created

Date Created
  • 2019

157817-Thumbnail Image.png

Distributed Reception in the Presence of Gaussian Interference

Description

An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover

An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and structured (lattice coding) strategies are studied towards this purpose for a certain adaptable system model. Asymptotic performances of these strategies and algorithms to compute them are developed. A jointly-compressed lattice code with proper configuration performs best of all strategies investigated.

Contributors

Agent

Created

Date Created
  • 2019

157824-Thumbnail Image.png

EEG-Based Estimation of Human Reaction Time Corresponding to Change of Visual Event.

Description

The human brain controls a person's actions and reactions. In this study, the main objective is to quantify reaction time towards a change of visual event and figuring out the

The human brain controls a person's actions and reactions. In this study, the main objective is to quantify reaction time towards a change of visual event and figuring out the inherent relationship between response time and corresponding brain activities. Furthermore, which parts of the human brain are responsible for the reaction time is also of interest. As electroencephalogram (EEG) signals are proportional to the change of brain functionalities with time, EEG signals from different locations of the brain are used as indicators of brain activities. As the different channels are from different parts of our brain, identifying most relevant channels can provide the idea of responsible brain locations. In this study, response time is estimated using EEG signal features from time, frequency and time-frequency domain. Regression-based estimation using the full data-set results in RMSE (Root Mean Square Error) of 99.5 milliseconds and a correlation value of 0.57. However, the addition of non-EEG features with the existing features gives RMSE of 101.7 ms and a correlation value of 0.58. Using the same analysis with a custom data-set provides RMSE of 135.7 milliseconds and a correlation value of 0.69. Classification-based estimation provides 79% & 72% of accuracy for binary and 3-class classication respectively. Classification of extremes (high-low) results in 95% of accuracy. Combining recursive feature elimination, tree-based feature importance, and mutual feature information method, important channels, and features are isolated based on the best result. As human response time is not solely dependent on brain activities, it requires additional information about the subject to improve the reaction time estimation.

Contributors

Agent

Created

Date Created
  • 2019

156974-Thumbnail Image.png

Separation of Agile Waveform Time-Frequency Signatures from Coexisting Multimodal Systems

Description

As the demand for wireless systems increases exponentially, it has become necessary

for different wireless modalities, like radar and communication systems, to share the

available bandwidth. One approach to realize coexistence successfully

As the demand for wireless systems increases exponentially, it has become necessary

for different wireless modalities, like radar and communication systems, to share the

available bandwidth. One approach to realize coexistence successfully is for each

system to adopt a transmit waveform with a unique nonlinear time-varying phase

function. At the receiver of the system of interest, the waveform received for process-

ing may still suffer from low signal-to-interference-plus-noise ratio (SINR) due to the

presence of the waveforms that are matched to the other coexisting systems. This

thesis uses a time-frequency based approach to increase the SINR of a system by estimating the unique nonlinear instantaneous frequency (IF) of the waveform matched

to the system. Specifically, the IF is estimated using the synchrosqueezing transform,

a highly localized time-frequency representation that also enables reconstruction of

individual waveform components. As the IF estimate is biased, modified versions of

the transform are investigated to obtain estimators that are both unbiased and also

matched to the unique nonlinear phase function of a given waveform. Simulations

using transmit waveforms of coexisting wireless systems are provided to demonstrate

the performance of the proposed approach using both biased and unbiased IF estimators.

Contributors

Agent

Created

Date Created
  • 2018

156976-Thumbnail Image.png

Remote Sensing For Vital Signs Monitoring Using Advanced Radar Signal Processing Techniques

Description

In the past half century, low-power wireless signals from portable radar sensors, initially continuous-wave (CW) radars and more recently ultra-wideband (UWB) radar systems, have been successfully used to detect

In the past half century, low-power wireless signals from portable radar sensors, initially continuous-wave (CW) radars and more recently ultra-wideband (UWB) radar systems, have been successfully used to detect physiological movements of stationary human beings.

The thesis starts with a careful review of existing signal processing techniques and state of the art methods possible for vital signs monitoring using UWB impulse systems. Then an in-depth analysis of various approaches is presented.

Robust heart-rate monitoring methods are proposed based on a novel result: spectrally the fundamental heartbeat frequency is respiration-interference-limited while its higher-order harmonics are noise-limited. The higher-order statistics related to heartbeat can be a robust indication when the fundamental heartbeat is masked by the strong lower-order harmonics of respiration or when phase calibration is not accurate if phase-based method is used. Analytical spectral analysis is performed to validate that the higher-order harmonics of heartbeat is almost respiration-interference free. Extensive experiments have been conducted to justify an adaptive heart-rate monitoring algorithm. The scenarios of interest are, 1) single subject, 2) multiple subjects at different ranges, 3) multiple subjects at same range, and 4) through wall monitoring.

A remote sensing radar system implemented using the proposed adaptive heart-rate estimation algorithm is compared to the competing remote sensing technology, a remote imaging photoplethysmography system, showing promising results.

State of the art methods for vital signs monitoring are fundamentally related to process the phase variation due to vital signs motions. Their performance are determined by a phase calibration procedure. Existing methods fail to consider the time-varying nature of phase noise. There is no prior knowledge about which of the corrupted complex signals, in-phase component (I) and quadrature component (Q), need to be corrected. A precise phase calibration routine is proposed based on the respiration pattern. The I/Q samples from every breath are more likely to experience similar motion noise and therefore they should be corrected independently. High slow-time sampling rate is used to ensure phase calibration accuracy. Occasionally, a 180-degree phase shift error occurs after the initial calibration step and should be corrected as well. All phase trajectories in the I/Q plot are only allowed in certain angular spaces. This precise phase calibration routine is validated through computer simulations incorporating a time-varying phase noise model, controlled mechanic system, and human subject experiment.

Contributors

Agent

Created

Date Created
  • 2018