Matching Items (51)
Filtering by

Clear all filters

Description
John Mayok Giel was six years old when the war broke out and his village was bombed.

“Lost Boys Found” is an ongoing, interdisciplinary project that is collecting, recording and archiving the oral histories of the Lost Boys/Girls of Sudan. The collection is a work-in-progress, seeking to record the oral

John Mayok Giel was six years old when the war broke out and his village was bombed.

“Lost Boys Found” is an ongoing, interdisciplinary project that is collecting, recording and archiving the oral histories of the Lost Boys/Girls of Sudan. The collection is a work-in-progress, seeking to record the oral history of as many Lost Boys/Girls as are willing, and will be used in a future book.
ContributorsGiel, John Mayok (Author)
Description
Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR.

Zoonotic pathogens that cause leprosy (Mycobacterium leprae) and tuberculosis (Mycobacterium tuberculosis complex, MTBC) continue to impact modern human populations. Therefore, methods able to survey mycobacterial infection in potential animal hosts are necessary for proper evaluation of human exposure threats. Here we tested for mycobacterial-specific single- and multi-copy loci using qPCR. In a trial study in which armadillos were artificially infected with M. leprae, these techniques were specific and sensitive to pathogen detection, while more traditional ELISAs were only specific. These assays were then employed in a case study to detect M. leprae as well as MTBC in wild marmosets. All marmosets were negative for M. leprae DNA, but 14 were positive for the mycobacterial rpoB gene assay. Targeted capture and sequencing of rpoB and other MTBC genes validated the presence of mycobacterial DNA in these samples and revealed that qPCR is useful for identifying mycobacterial-infected animal hosts.
Created2015-11-16
Description

Background:
Many pharmaceutical drugs are known to be ineffective or have negative side effects in a substantial proportion of patients. Genomic advances are revealing that some non-synonymous single nucleotide variants (nsSNVs) may cause differences in drug efficacy and side effects. Therefore, it is desirable to evaluate nsSNVs of interest in their

Background:
Many pharmaceutical drugs are known to be ineffective or have negative side effects in a substantial proportion of patients. Genomic advances are revealing that some non-synonymous single nucleotide variants (nsSNVs) may cause differences in drug efficacy and side effects. Therefore, it is desirable to evaluate nsSNVs of interest in their ability to modulate the drug response.

Results:
We found that the available data on the link between drug response and nsSNV is rather modest. There were only 31 distinct drug response-altering (DR-altering) and 43 distinct drug response-neutral (DR-neutral) nsSNVs in the whole Pharmacogenomics Knowledge Base (PharmGKB). However, even with this modest dataset, it was clear that existing bioinformatics tools have difficulties in correctly predicting the known DR-altering and DR-neutral nsSNVs. They exhibited an overall accuracy of less than 50%, which was not better than random diagnosis. We found that the underlying problem is the markedly different evolutionary properties between positions harboring nsSNVs linked to drug responses and those observed for inherited diseases. To solve this problem, we developed a new diagnosis method, Drug-EvoD, which was trained on the evolutionary properties of nsSNVs associated with drug responses in a sparse learning framework. Drug-EvoD achieves a TPR of 84% and a TNR of 53%, with a balanced accuracy of 69%, which improves upon other methods significantly.

Conclusions:
The new tool will enable researchers to computationally identify nsSNVs that may affect drug responses. However, much larger training and testing datasets are needed to develop more reliable and accurate tools.

ContributorsGerek, Nevin Z. (Author) / Liu, Li (Author) / Gerold, Kristyn (Author) / Biparva, Pegah (Author) / Thomas, Eric D. (Author) / Kumar, Sudhir (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor)
Created2015-01-15
Description
Microalgae-derived lipids are good sources of biofuel, but extracting them involves high cost, energy
expenditure, and environmental risk. Surfactant treatment to disrupt Scenedesmus biomass was evaluated
as a means to make solvent extraction more efficient. Surfactant treatment increased the recovery of fatty
acid methyl ester (FAME) by as much as 16-fold vs. untreated

Microalgae-derived lipids are good sources of biofuel, but extracting them involves high cost, energy
expenditure, and environmental risk. Surfactant treatment to disrupt Scenedesmus biomass was evaluated
as a means to make solvent extraction more efficient. Surfactant treatment increased the recovery of fatty
acid methyl ester (FAME) by as much as 16-fold vs. untreated biomass using isopropanol extraction, and
nearly 100% FAME recovery was possible without any Folch solvent, which is toxic and expensive. Surfactant
treatment caused cell disruption and morphological changes to the cell membrane, as documented by
transmission electron microscopy and flow cytometry. Surfactant treatment made it possible to extract wet
biomass at room temperature, which avoids the expense and energy cost associated with heating
and drying of biomass during the extraction process. The best FAME recovery was obtained from highlipid
biomass treated with Myristyltrimethylammonium bromide (MTAB)- and 3-(decyldimethylammonio)-
propanesulfonate inner salt (3_DAPS)-surfactants using a mixed solvent (hexane : isopropanol = 1 : 1, v/v)
vortexed for just 1 min; this was as much as 160-fold higher than untreated biomass. The critical micelle
concentration of the surfactants played a major role in dictating extraction performance, but the growth
stage of the biomass had an even larger impact on how well the surfactants disrupted the cells and
improved lipid extraction. Surfactant treatment had minimal impact on extracted-FAME profiles and,
consequently, fuel-feedstock quality. This work shows that surfactant treatment is a promising strategy for
more efficient, sustainable, and economical extraction of fuel feedstock from microalgae.
Created2015-10-20
Description
Using a CH[subscript 4]-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO[subscript 4]–) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO[subscript 3]–) and nitrite (NO[subscript 2]–) surface loadings on ClO[subscript 4]– reduction and on the biofilm community’s mechanism

Using a CH[subscript 4]-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO[subscript 4]–) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO[subscript 3]–) and nitrite (NO[subscript 2]–) surface loadings on ClO[subscript 4]– reduction and on the biofilm community’s mechanism for ClO[subscript 4]– reduction. The ANMO-D biofilm reduced up to 5 mg/L of ClO[subscript 4]– to a nondetectable level using CH[subscript 4] as the only electron donor and carbon source when CH[subscript 4] delivery was not limiting; NO[subscript 3]– was completely reduced as well when its surface loading was ≤0.32 g N/m[superscript 2]-d. When CH[subscript 4] delivery was limiting, NO[subscript 3]– inhibited ClO[subscript 4]– reduction by competing for the scarce electron donor. NO[subscript 2]– inhibited ClO[subscript 4]– reduction when its surface loading was ≥0.10 g N/m[superscript 2]-d, probably because of cellular toxicity. Although Archaea were present through all stages, Bacteria dominated the ClO[subscript 4]–-reducing ANMO-D biofilm, and gene copies of the particulate methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene copies. These pieces of evidence support that ClO[subscript 4]– reduction by the MBfR biofilm involved chlorite (ClO[subscript 2]–) dismutation to generate the O[subscript 2] needed as a cosubstrate for the mono-oxygenation of CH[subscript 4].
ContributorsLuo, Yi-Hao (Author) / Chen, Ran (Author) / Wen, Li-Lian (Author) / Meng, Fan (Author) / Zhang, Yin (Author) / Lai, Chun-Yu (Author) / Rittmann, Bruce (Author) / Zhao, He-Ping (Author) / Zheng, Ping (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2015-02-17
Description
To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or

To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a biofilm process, we explored the simultaneous effects of oxygen limitation and free ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm. We used the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions with experiments in continuous flow biofilm reactors (CFBRs). CFBR experiments were organized into four sets with these expected outcomes based on the MSNBM as follows: (i) Control, giving full nitrification; (ii) oxygen limitation, giving modest long-term nitrite build up; (iii) FA inhibition, giving no long-term nitrite accumulation; and (iv) FA inhibition plus oxygen limitation, giving major long-term nitrite accumulation. Consistent with MSNBM predictions, the experimental results showed that nitrite accumulated in sets 2–4 in the short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen limitation. Furthermore, nitrite accumulation was substantially greater in set 4, which also included FA inhibition. However, FA inhibition (and accompanying FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation. Nitrite-oxidizing bacteria (NOB) activity batch tests confirmed that little NOB or only a small fraction of NOB were present in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous modeling results that nitrite accumulation could be achieved with a lower ammonium concentration than had been required for a suspended-growth process. Additional findings were that the biofilm exposed to low dissolved oxygen (DO) limitation and FA inhibition was substantially denser and probably had a lower detachment rate.
ContributorsPark, Seongjun (Author) / Chung, Jinwook (Author) / Rittmann, Bruce (Author) / Bae, Wookeun (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2015-01-01
Description
Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin

Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, formation of heterochromatin at telomeres and the homothallic silent mating type loci require the Sir3 protein. Here, we use a combination of sedimentation velocity, atomic force microscopy and nucleosomal array capture to characterize the stoichiometry and conformation of Sir3 nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome. We also find that Sir3 fibres are less compact than canonical magnesium-induced 30 nm fibres. We suggest that heterochromatin proteins promote silencing by ‘coating’ nucleosomal arrays, stabilizing interactions between nucleosomal histones and DNA.
ContributorsSwygert, Sarah G. (Author) / Manning, Benjamin J. (Author) / Senapati, Subhadip (Author) / Kaur, Parminder (Author) / Lindsay, Stuart (Author) / Demeler, Borries (Author) / Peterson, Craig L. (Author) / Biodesign Institute (Contributor) / Single Molecule Biophysics (Contributor)
Created2014-08-01
Description

The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while

The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while effluent COD and N are not changed much by hybrid operation, the hybrid system gives increased methane production in the AD and decreased sludge wasting, both caused mainly by a negative actual solids retention time in the hybrid AD. Increased retention of biomass and EPS allows for more hydrolysis and conversion to methane in the hybrid AD. However, fermenters and methanogens survive in the AS, allowing significant methane production in the settler and thickener of both systems, and AD sludge recycle makes methane formation greater in the hybrid system.

ContributorsYoung, Michelle (Author) / Marcus, Andrew (Author) / Rittmann, Bruce (Author) / Biodesign Institute (Contributor) / Swette Center for Environmental Biotechnology (Contributor)
Created2013-08-13
130298-Thumbnail Image.png
Description
The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity,

The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also permit an analysis of the dependence of crystal quality on crystal size.
ContributorsAbdallah, Bahige (Author) / Zatsepin, Nadia (Author) / Roy Chowdhury, Shatabdi (Author) / Coe, Jesse (Author) / Conrad, Chelsie (Author) / Dorner, Katerina (Author) / Sierra, Raymond G. (Author) / Stevenson, Hilary P. (Author) / Camacho Alanis, Fernanda (Author) / Grant, Thomas D. (Author) / Nelson, Garrett (Author) / James, Daniel (Author) / Calero, Guillermo (Author) / Wachter, Rebekka (Author) / Spence, John (Author) / Weierstall, Uwe (Author) / Fromme, Petra (Author) / Ros, Alexandra (Author) / Department of Chemistry and Biochemistry (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-08-19
130296-Thumbnail Image.png
Description
As I sat writing this ‘personal reflections’ manuscript in the spring of 2015, I was seeing press reports related to the use of tobacco to make an Ebola therapeutic called ZMapp. For several months newspaper articles, radio shows and hour-long TV documentaries have given the public unprecedented exposure to the

As I sat writing this ‘personal reflections’ manuscript in the spring of 2015, I was seeing press reports related to the use of tobacco to make an Ebola therapeutic called ZMapp. For several months newspaper articles, radio shows and hour-long TV documentaries have given the public unprecedented exposure to the fact that ‘plant-made pharmaceuticals’ (PMP) can be life-saving drugs. I have been asked by many nonspecialists – why tobacco? How can this work? After spending over twenty years doing research in this field and many, many hours in public policy meetings promoting PMPs as an important tool of public health, I do not tire of hearing the same questions. Although there is an increasing pipeline of new protein drugs that will come from plants for both human and animal health, the general public has little knowledge of these specialized tools and therefore limited support for the field. ZMapp has given us free advertising on an international scale that I could never have anticipated.
Created2015-09-08