Matching Items (25)
161252-Thumbnail Image.png
Description
The evolution of defects at different stages of strain relaxation in low-mismatched GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures, and the underlying relaxation mechanisms, have been comprehensively studied primarily using transmission electron microscopy (TEM). Aberration-corrected scanning transmission electron microscopy (STEM) has been used for atomic-scale study of interfacial defects in low-mismatched GaAs(001)-based

The evolution of defects at different stages of strain relaxation in low-mismatched GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures, and the underlying relaxation mechanisms, have been comprehensively studied primarily using transmission electron microscopy (TEM). Aberration-corrected scanning transmission electron microscopy (STEM) has been used for atomic-scale study of interfacial defects in low-mismatched GaAs(001)-based and high-mismatched GaSb/GaAs(001) heterostructures.Three distinct stages of strain relaxation were identified in GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures with GaAsSb film thicknesses in the range of 50 to 4000 nm capped with 50-nm-thick GaAs layers. Diffraction contrast analysis with conventional TEM revealed that although 60° dislocations were primarily formed during the initial sluggish Stage-I relaxation, 90° dislocations were also created. Many curved dislocations, the majority of which extended into the substrate, were formed during Stage-II and Stage-III relaxation. The capping layers of heterostructures with larger film thickness (500 nm onwards) exhibited only Stage-I relaxation. A decrease in dislocation density was observed at the cap/film interface of the heterostructure with 4000-nm-thick film compared to that with 2000-nm-thick film, which correlated with smoothening of surface cross-hatch morphology. Detailed consideration of plausible dislocation sources for the capping layer led to the conclusion that dislocation half-loops nucleated at surface troughs were the main source of threading dislocations in these heterostructures. Aberration-corrected STEM imaging revealed that interfacial 60° dislocations in GaAs/GaAsSb/GaAs(001) and GaAs/GaAsP/GaAs(001) heterostructures were dissociated to form intrinsic stacking faults bounded by 90° and 30° Shockley partial dislocations. The cores of the 30° partials contained single atomic columns indicating that these dislocations primarily belonged to glide set. Apart from isolated dissociated 60° dislocations, Lomer-Cottrell locks, Lomer dislocations and a novel type of dissociated 90° dislocation were observed in GaAs/GaAsSb/GaAs heterostructures. The core structure of interfacial defects in GaSb/GaAs(001) heterostructure was also investigated using aberration-corrected STEM. 90° Lomer dislocations were primarily formed; however, glide-set perfect 60° and dissociated 60° dislocations were also observed. The 5-7 atomic-ring shuffle-set dislocation, the left-displaced 6-8 atomic-ring glide-set and the right-displaced 6-8 atomic-ring glide-set dislocations were three types of Lomer dislocations that were identified, among which the shuffle-set type was most common.
ContributorsGangopadhyay, Abhinandan (Author) / Smith, David J. (Thesis advisor) / Bertoni, Mariana (Committee member) / Crozier, Peter A. (Committee member) / King, Richard R. (Committee member) / McCartney, Martha R. (Committee member) / Arizona State University (Publisher)
Created2021
132175-Thumbnail Image.png
Description
The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the

The investigation into wide band gap semiconductors for use in tandem solar cells has become an increasingly more researched area with many new absorbers outlining the landscape. Pairing silicon with another cheap wide band gap semiconductor absorber can generate more efficient solar cell, which could continue to drive up the energy output from solar. One such recently researched wide band gap absorber is ZnSnN2. ZnSnN2 proves too difficult to form under most conditions, but has the necessary band gap to make it a potential earth abundant solar absorber. The deposition process for ZnSnN2 is usually conducted with Zn and Sn metal targets while flowing N2 gas. Due to restrictions with chamber depositions, instead ZnO and SnO2 targets were sputtered with N2 gas to attempt to form separate zinc and tin oxynitrides as an initial single target study prior to future combinatorial studies. The electrical and optical properties and crystal structure of these thin films were analyzed to determine the nitrogen incorporation in the thin films through X-ray diffraction, UV-Vis spectrophotometry, and 4-point probe measurements. The SnO2 thin films showed a clear response in the absorption coefficient leading but showed no observable XRD peak shift. Thus, it is unlikely that substantial amounts of nitrogen were incorporated into SnO¬2. ZnO showed a clear response increase in conductivity with N2 with an additional shift in the XRD peak at 300 °C and potential secondary phase peak. Nitrogen incorporation was achieved with fair amounts of certainty for the ZnO thin films.
ContributorsTheut, Nicholas C (Author) / Bertoni, Mariana (Thesis director) / Holman, Zachary (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
190959-Thumbnail Image.png
Description
The propagation of waves in solids, especially when characterized by dispersion, remains a topic of profound interest in the field of signal processing. Dispersion represents a phenomenon where wave speed becomes a function of frequency and results in multiple oscillatory modes. Such signals find application in structural healthmonitoring for identifying

The propagation of waves in solids, especially when characterized by dispersion, remains a topic of profound interest in the field of signal processing. Dispersion represents a phenomenon where wave speed becomes a function of frequency and results in multiple oscillatory modes. Such signals find application in structural healthmonitoring for identifying potential damage sensitive features in complex materials. Consequently, it becomes important to find matched time-frequency representations for characterizing the properties of the multiple frequency-dependent modes of propagation in dispersive material. Various time-frequency representations have been used for dispersive signal analysis. However, some of them suffered from poor timefrequency localization or were designed to match only specific dispersion modes with known characteristics, or could not reconstruct individual dispersive modes. This thesis proposes a new time-frequency representation, the nonlinear synchrosqueezing transform (NSST) that is designed to offer high localization to signals with nonlinear time-frequency group delay signatures. The NSST follows the technique used by reassignment and synchrosqueezing methods to reassign time-frequency points of the short-time Fourier transform and wavelet transform to specific localized regions in the time-frequency plane. As the NSST is designed to match signals with third order polynomial phase functions in the frequency domain, we derive matched group delay estimators for the time-frequency point reassignment. This leads to a highly localized representation for nonlinear time-frequency characteristics that also allow for the reconstruction of individual dispersive modes from multicomponent signals. For the reconstruction process, we propose a novel unsupervised learning approach that does not require prior information on the variation or number of modes in the signal. We also propose a Bayesian group delay mode merging approach for reconstructing modes that overlap in time and frequency. In addition to using simulated signals, we demonstrate the performance of the new NSST, together with mode extraction, using real experimental data of ultrasonic guided waves propagating through a composite plate.
ContributorsIkram, Javaid (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Bertoni, Mariana (Committee member) / Sinha, Kanu (Committee member) / Arizona State University (Publisher)
Created2023
158686-Thumbnail Image.png
Description
Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience losses of adhesion, exposing the module to accelerated degradation. Understanding

Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience losses of adhesion, exposing the module to accelerated degradation. Understanding the relation between interfacial adhesion and water content inside photovoltaic modules can help mitigate detrimental power losses. Water content measurements via water reflectometry detection combined with 180° peel tests were used to study adhesion of module materials exposed to damp heat and dry heat conditions. The effect of temperature, cumulative water dose, and water content on interfacial adhesion between ethylene vinyl acetate and (1) glass, (2) front of the cell, and (3) backsheet was studied. Temperature and time decreased adhesion at all these interfaces. Water content in the sample during the measurement showed significant decreases in adhesion for the Backsheet/Ethylene vinyl acetate interface. Water dose showed little effect for the Glass/ Ethylene vinyl acetate and Backsheet/ Ethylene vinyl acetate interfaces, but there was significant adhesion loss with water dose at the front cell busbar/encapsulant interface. Initial tensile test results to monitor the effects of the mechanical properties ethylene vinyl acetate and backsheet showed water content increasing the strength of ethylene vinyl acetate during plastic deformation but no change in the strength of the backsheet properties. This mechanical property change is likely inducing variation along the peel interface to possibly convolute the adhesion measurements conducted or to explain the variation seen for the water saturated and dried peel test sample types.
ContributorsTheut, Nicholas (Author) / Bertoni, Mariana (Thesis advisor) / Holman, Zachary (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2020
127943-Thumbnail Image.png
Description

In this work, we are showing that iron (Fe) related defects in mono-silicon have very different recombination characteristics depending on the doping element employed. While the defect characteristics of the Fe in its dissociated state is comparably the same in the materials of investigation, the defect characteristics of the associated

In this work, we are showing that iron (Fe) related defects in mono-silicon have very different recombination characteristics depending on the doping element employed. While the defect characteristics of the Fe in its dissociated state is comparably the same in the materials of investigation, the defect characteristics of the associated state vary considerably. By using, defect parameter contour mapping (DPCM), a newly developed method for analyzing temperature and injection dependent lifetime data, we have for the first time, been able to show that in the case of gallium doping it is the orthorhombic state of the Fe-acceptor complex that is dominating the lifetime.

ContributorsNaerland, Tine (Author) / Bernardini, Simone (Author) / Stoddard, Nathan (Author) / Good, Ethan (Author) / Augusto, Andre (Author) / Bertoni, Mariana (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-09-21