Matching Items (98)
171733-Thumbnail Image.png
Description
Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design

Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design and crash testing, and mapping interactions of the human body. An accurate model can aid in the design of a system to ensure the system is effective and meets specified performance criteria when built. A model may have many design parameters, such as geometrical constraints and component mechanical properties, or controller parameters if the system uses an external controller. Varying these parameters and rerunning analyses by hand to find an ideal design can be time consuming for models that take hours or days to run. To reduce the amount of time required to find a set of parameters that produces a desired performance, optimization is necessary. Many papers have discussed methods for optimizing rigid and flexible MBD models, and separately their controllers, using both gradient-based and gradient-free algorithms. However, these optimization methods have not been used to optimize full-scale MBD models and their controllers simultaneously. This thesis presents a method for co-optimizing an MBD model and controller that allows for the flexibility to find model and controller-based solutions for systems with tightly coupled parameters. Specifically, the optimization is performed on a quadrotor drone MBD model undergoing disturbance from a slung load and its position controller to meet specified position error performance criteria. A gradient-free optimization algorithm and multiple objective approach is used due to the many local optima from the tradeoffs between the model and controller parameters. The thesis uses nine different quadrotor cases with three different position error formulations. The results are used to determine the effectiveness of the optimization and the ability to converge on a single optimal design. After reviewing the results, the optimization limitations are discussed as well as the ability to transition the optimization to work with different MBD models and their controllers.
ContributorsGambatese, Marcus (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Inoyama, Daisaku (Committee member) / Arizona State University (Publisher)
Created2022
171530-Thumbnail Image.png
Description
Autonomous systems inevitably must interact with other surrounding systems; thus, algorithms for intention/behavior estimation are of great interest. This thesis dissertation focuses on developing passive and active model discrimination algorithms (PMD and AMD) with applications to set-valued intention identification and fault detection for uncertain/bounded-error dynamical systems. PMD uses the obtained

Autonomous systems inevitably must interact with other surrounding systems; thus, algorithms for intention/behavior estimation are of great interest. This thesis dissertation focuses on developing passive and active model discrimination algorithms (PMD and AMD) with applications to set-valued intention identification and fault detection for uncertain/bounded-error dynamical systems. PMD uses the obtained input-output data to invalidate the models, while AMD designs an auxiliary input to assist the discrimination process. First, PMD algorithms are proposed for noisy switched nonlinear systems constrained by metric/signal temporal logic specifications, including systems with lossy data modeled by (m,k)-firm constraints. Specifically, optimization-based algorithms are introduced for analyzing the detectability/distinguishability of models and for ruling out models that are inconsistent with observations at run time. On the other hand, two AMD approaches are designed for noisy switched nonlinear models and piecewise affine inclusion models, which involve bilevel optimization with integer variables/constraints in the inner/lower level. The first approach solves the inner problem using mixed-integer parametric optimization, whose solution is included when solving the outer problem/higher level, while the second approach moves the integer variables/constraints to the outer problem in a manner that retains feasibility and recasts the problem as a tractable mixed-integer linear programming (MILP). Furthermore, AMD algorithms are proposed for noisy discrete-time affine time-invariant systems constrained by disjunctive and coupled safety constraints. To overcome the issues associated with generalized semi-infinite constraints due to state-dependent input constraints and disjunctive safety constraints, several constraint reformulations are proposed to recast the AMD problems as tractable MILPs. Finally, partition-based AMD approaches are proposed for noisy discrete-time affine time-invariant models with model-independent parameters and output measurement that are revealed at run time. Specifically, algorithms with fixed and adaptive partitions are proposed, where the latter improves on the performance of the former by allowing the partitions to be optimized. By partitioning the operation region, the problem is solved offline, and partition trees are constructed which can be used as a `look-up table' to determine the optimal input depending on revealed information at run time.
ContributorsNiu, Ruochen (Author) / Yong, Sze Zheng S.Z. (Thesis advisor) / Berman, Spring (Committee member) / Ren, Yi (Committee member) / Zhang, Wenlong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2022
154349-Thumbnail Image.png
Description
In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a

In this thesis, we focus on some of the NP-hard problems in control theory. Thanks to the converse Lyapunov theory, these problems can often be modeled as optimization over polynomials. To avoid the problem of intractability, we establish a trade off between accuracy and complexity. In particular, we develop a sequence of tractable optimization problems - in the form of Linear Programs (LPs) and/or Semi-Definite Programs (SDPs) - whose solutions converge to the exact solution of the NP-hard problem. However, the computational and memory complexity of these LPs and SDPs grow exponentially with the progress of the sequence - meaning that improving the accuracy of the solutions requires solving SDPs with tens of thousands of decision variables and constraints. Setting up and solving such problems is a significant challenge. The existing optimization algorithms and software are only designed to use desktop computers or small cluster computers - machines which do not have sufficient memory for solving such large SDPs. Moreover, the speed-up of these algorithms does not scale beyond dozens of processors. This in fact is the reason we seek parallel algorithms for setting-up and solving large SDPs on large cluster- and/or super-computers.

We propose parallel algorithms for stability analysis of two classes of systems: 1) Linear systems with a large number of uncertain parameters; 2) Nonlinear systems defined by polynomial vector fields. First, we develop a distributed parallel algorithm which applies Polya's and/or Handelman's theorems to some variants of parameter-dependent Lyapunov inequalities with parameters defined over the standard simplex. The result is a sequence of SDPs which possess a block-diagonal structure. We then develop a parallel SDP solver which exploits this structure in order to map the computation, memory and communication to a distributed parallel environment. Numerical tests on a supercomputer demonstrate the ability of the algorithm to efficiently utilize hundreds and potentially thousands of processors, and analyze systems with 100+ dimensional state-space. Furthermore, we extend our algorithms to analyze robust stability over more complicated geometries such as hypercubes and arbitrary convex polytopes. Our algorithms can be readily extended to address a wide variety of problems in control such as Hinfinity synthesis for systems with parametric uncertainty and computing control Lyapunov functions.
ContributorsKamyar, Reza (Author) / Peet, Matthew (Thesis advisor) / Berman, Spring (Committee member) / Rivera, Daniel (Committee member) / Artemiadis, Panagiotis (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2016
157851-Thumbnail Image.png
Description
Vehicles traverse granular media through complex reactions with large numbers of small particles. Many approaches rely on empirical trends derived from wheeled vehicles in well-characterized media. However, the environments of numerous bodies such as Mars or the moon are primarily composed of fines called regolith which require different design considerations.

Vehicles traverse granular media through complex reactions with large numbers of small particles. Many approaches rely on empirical trends derived from wheeled vehicles in well-characterized media. However, the environments of numerous bodies such as Mars or the moon are primarily composed of fines called regolith which require different design considerations. This dissertation discusses research aimed at understanding the role and function of empirical, computational, and theoretical granular physics approaches as they apply to helical geometries, their envelope of applicability, and the development of new laws. First, a static Archimedes screw submerged in granular material (glass beads) is analyzed using two methods: Granular Resistive Force Theory (RFT), an empirically derived set of equations based on fluid dynamic superposition principles, and Discrete element method (DEM) simulations, a particle modeling software. Dynamic experiments further confirm the computational method with multi-body dynamics (MBD)-DEM co-simulations. Granular Scaling Laws (GSL), a set of physics relationships based on non-dimensional analysis, are utilized for the gravity-modified environments. A testing chamber to contain a lunar analogue, BP-1, is developed and built. An investigation of straight and helical grousered wheels in both silica sand and BP-1 is performed to examine general GSL applicability for lunar purposes. Mechanical power draw and velocity prediction by GSL show non-trivial but predictable deviation. BP-1 properties are characterized and applied to an MBD-DEM environment for the first time. MBD-DEM simulation results between Earth gravity and lunar gravity show good agreement with theoretical predictions for both power and velocity. The experimental deviation is further investigated and found to have a mass-dependant component driven by granular sinkage and engagement. Finally, a robust set of helical granular scaling laws (HGSL) are derived. The granular dynamics scaling of three-dimensional screw-driven mobility is reduced to a similar theory as wheeled scaling laws, provided the screw is radially continuous. The new laws are validated in BP-1 with results showing very close agreement to predictions. A gravity-variant version of these laws is validated with MBD-DEM simulations. The results of the dissertation suggest GSL, HGSL, and MBD-DEM give reasonable approximations for use in lunar environments to predict rover mobility given adequate granular engagement.
ContributorsThoesen, Andrew Lawrence (Author) / Marvi, Hamidreza (Thesis advisor) / Berman, Spring (Committee member) / Emady, Heather (Committee member) / Lee, Hyunglae (Committee member) / Klesh, Andrew (Committee member) / Arizona State University (Publisher)
Created2019
158028-Thumbnail Image.png
Description
For the last 50 years, oscillator modeling in ranging systems has received considerable

attention. Many components in a navigation system, such as the master oscillator

driving the receiver system, as well the master oscillator in the transmitting system

contribute significantly to timing errors. Algorithms in the navigation processor must

be able to predict and

For the last 50 years, oscillator modeling in ranging systems has received considerable

attention. Many components in a navigation system, such as the master oscillator

driving the receiver system, as well the master oscillator in the transmitting system

contribute significantly to timing errors. Algorithms in the navigation processor must

be able to predict and compensate such errors to achieve a specified accuracy. While

much work has been done on the fundamentals of these problems, the thinking on said

problems has not progressed. On the hardware end, the designers of local oscillators

focus on synthesized frequency and loop noise bandwidth. This does nothing to

mitigate, or reduce frequency stability degradation in band. Similarly, there are not

systematic methods to accommodate phase and frequency anomalies such as clock

jumps. Phase locked loops are fundamentally control systems, and while control

theory has had significant advancement over the last 30 years, the design of timekeeping

sources has not advanced beyond classical control. On the software end,

single or two state oscillator models are typically embedded in a Kalman Filter to

alleviate time errors between the transmitter and receiver clock. Such models are

appropriate for short term time accuracy, but insufficient for long term time accuracy.

Additionally, flicker frequency noise may be present in oscillators, and it presents

mathematical modeling complications. This work proposes novel H∞ control methods

to address the shortcomings in the standard design of time-keeping phase locked loops.

Such methods allow the designer to address frequency stability degradation as well

as high phase/frequency dynamics. Additionally, finite-dimensional approximants of

flicker frequency noise that are more representative of the truth system than the

tradition Gauss Markov approach are derived. Last, to maintain timing accuracy in

a wide variety of operating environments, novel Banks of Adaptive Extended Kalman

Filters are used to address both stochastic and dynamic uncertainty.
ContributorsEchols, Justin A (Author) / Bliss, Daniel W (Thesis advisor) / Tsakalis, Konstantinos S (Committee member) / Berman, Spring (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2020
157990-Thumbnail Image.png
Description
As robots become mechanically more capable, they are going to be more and more integrated into our daily lives. Over time, human’s expectation of what the robot capabilities are is getting higher. Therefore, it can be conjectured that often robots will not act as human commanders intended them to do.

As robots become mechanically more capable, they are going to be more and more integrated into our daily lives. Over time, human’s expectation of what the robot capabilities are is getting higher. Therefore, it can be conjectured that often robots will not act as human commanders intended them to do. That is, the users of the robots may have a different point of view from the one the robots do.

The first part of this dissertation covers methods that resolve some instances of this mismatch when the mission requirements are expressed in Linear Temporal Logic (LTL) for handling coverage, sequencing, conditions and avoidance. That is, the following general questions are addressed:

* What cause of the given mission is unrealizable?

* Is there any other feasible mission that is close to the given one?

In order to answer these questions, the LTL Revision Problem is applied and it is formulated as a graph search problem. It is shown that in general the problem is NP-Complete. Hence, it is proved that the heuristic algorihtm has 2-approximation bound in some cases. This problem, then, is extended to two different versions: one is for the weighted transition system and another is for the specification under quantitative preference. Next, a follow up question is addressed:

* How can an LTL specified mission be scaled up to multiple robots operating in confined environments?

The Cooperative Multi-agent Planning Problem is addressed by borrowing a technique from cooperative pathfinding problems in discrete grid environments. Since centralized planning for multi-robot systems is computationally challenging and easily results in state space explosion, a distributed planning approach is provided through agent coupling and de-coupling.

In addition, in order to make such robot missions work in the real world, robots should take actions in the continuous physical world. Hence, in the second part of this thesis, the resulting motion planning problems is addressed for non-holonomic robots.

That is, it is devoted to autonomous vehicles’ motion planning in challenging environments such as rural, semi-structured roads. This planning problem is solved with an on-the-fly hierarchical approach, using a pre-computed lattice planner. It is also proved that the proposed algorithm guarantees resolution-completeness in such demanding environments. Finally, possible extensions are discussed.
ContributorsKim, Kangjin (Author) / Fainekos, Georgios (Thesis advisor) / Baral, Chitta (Committee member) / Lee, Joohyung (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2019
158843-Thumbnail Image.png
Description
Autonomous Vehicles (AVs), or self-driving cars, are poised to have an enormous impact on the automotive industry and road transportation. While advances have been made towards the development of safe, competent autonomous vehicles, there has been inadequate attention to the control of autonomous vehicles in unanticipated situations, such as imminent

Autonomous Vehicles (AVs), or self-driving cars, are poised to have an enormous impact on the automotive industry and road transportation. While advances have been made towards the development of safe, competent autonomous vehicles, there has been inadequate attention to the control of autonomous vehicles in unanticipated situations, such as imminent crashes. Even if autonomous vehicles follow all safety measures, accidents are inevitable, and humans must trust autonomous vehicles to respond appropriately in such scenarios. It is not plausible to program autonomous vehicles with a set of rules to tackle every possible crash scenario. Instead, a possible approach is to align their decision-making capabilities with the moral priorities, values, and social motivations of trustworthy human drivers.Toward this end, this thesis contributes a simulation framework for collecting, analyzing, and replicating human driving behaviors in a variety of scenarios, including imminent crashes. Four driving scenarios in an urban traffic environment were designed in the CARLA driving simulator platform, in which simulated cars can either drive autonomously or be driven by a user via a steering wheel and pedals. These included three unavoidable crash scenarios, representing classic trolley-problem ethical dilemmas, and a scenario in which a car must be driven through a school zone, in order to examine driver prioritization of reaching a destination versus ensuring safety. Sample human driving data in CARLA was logged from the simulated car’s sensors, including the LiDAR, IMU and camera. In order to reproduce human driving behaviors in a simulated vehicle, it is necessary for the AV to be able to identify objects in the environment and evaluate the volume of their bounding boxes for prediction and planning. An object detection method was used that processes LiDAR point cloud data using the PointNet neural network architecture, analyzes RGB images via transfer learning using the Xception convolutional neural network architecture, and fuses the outputs of these two networks. This method was trained and tested on both the KITTI Vision Benchmark Suite dataset and a virtual dataset exclusively generated from CARLA. When applied to the KITTI dataset, the object detection method achieved an average classification accuracy of 96.72% and an average Intersection over Union (IoU) of 0.72, where the IoU metric compares predicted bounding boxes to those used for training.
ContributorsGovada, Yashaswy (Author) / Berman, Spring (Thesis advisor) / Johnson, Kathryn (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2020
158858-Thumbnail Image.png
Description
Stroke is a debilitating disorder and 75% of individuals with stroke (iwS) have upper extremity deficits. IwS are prescribed therapies to enhance upper-extremity mobility, but current most effective therapies have minimum requirements that the individuals with severe impairment do not meet. Thus, there is a need to enhance the therapies.

Stroke is a debilitating disorder and 75% of individuals with stroke (iwS) have upper extremity deficits. IwS are prescribed therapies to enhance upper-extremity mobility, but current most effective therapies have minimum requirements that the individuals with severe impairment do not meet. Thus, there is a need to enhance the therapies. Recent studies have shown that StartReact -the involuntary release of a planned movement, triggered by a startling stimulus (e.g., loud sound)- elicits faster and larger muscle activation in iwS compared to voluntary-initiated movement. However, StartReact has been only cursorily studied to date and there are some gaps in the StartReact knowledge. Previous studies have only evaluated StartReact on single-jointed movements in iwS, ignoring more functional tasks. IwS usually have abnormal flexor activity during extension tasks and abnormal muscle synergy especially during multi-jointed tasks; therefore, it is unknown 1) if more complex multi-jointed reach movements are susceptible to StartReact, and 2) if StartReact multi-jointed movements will be enhanced in the same way as single-jointed movements in iwS. In addition, previous studies showed that individuals with severe stroke, especially those with higher spasticity, experienced higher abnormal flexor muscle activation during StartReact trials. However, there is no study evaluating the impact of this elevated abnormal flexor activity on movement, muscle activation and muscle synergy alterations during voluntary-initiated movements after exposure to StartReact.
This dissertation evaluates StartReact and the voluntary trials before and after exposure to StartReact during a point-to-point multi-jointed reach task to three different targets covering a large workspace. The results show that multi-jointed reach tasks are susceptible to StartReact in iwS and the distance, muscle and movement onset speed, and muscle activations percentages and amplitude increase during StartReact trials. In addition, the distance, accuracy, muscle and movement onsets speeds, and muscle synergy similarity indices to the norm synergies increase during the voluntary-initiated trials after exposure to StartReact. Overall, this dissertation shows that exposure to StartReact did not impair voluntary-initiated movement and muscle synergy, but even improved them. Therefore, this study suggests that StartReact is safe for more investigations in training studies and therapy.
ContributorsRahimiTouranposhti, Marziye (Author) / Honeycutt, Claire F. (Thesis advisor) / Roh, Jinsook (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2020
158834-Thumbnail Image.png
Description
One potential application of multi-robot systems is collective transport, a task in which multiple mobile robots collaboratively transport a payload that is too large or heavy to be carried by a single robot. Numerous control schemes have been proposed for collective transport in environments where robots can localize themselves (e.g.,

One potential application of multi-robot systems is collective transport, a task in which multiple mobile robots collaboratively transport a payload that is too large or heavy to be carried by a single robot. Numerous control schemes have been proposed for collective transport in environments where robots can localize themselves (e.g., using GPS) and communicate with one another, have information about the payload's geometric and dynamical properties, and follow predefined robot and/or payload trajectories. However, these approaches cannot be applied in uncertain environments where robots do not have reliable communication and GPS and lack information about the payload. These conditions characterize a variety of applications, including construction, mining, assembly in space and underwater, search-and-rescue, and disaster response.
Toward this end, this thesis presents decentralized control strategies for collective transport by robots that regulate their actions using only their local sensor measurements and minimal prior information. These strategies can be implemented on robots that have limited or absent localization capabilities, do not explicitly exchange information, and are not assigned predefined trajectories. The controllers are developed for collective transport over planar surfaces, but can be extended to three-dimensional environments.

This thesis addresses the above problem for two control objectives. First, decentralized controllers are proposed for velocity control of collective transport, in which the robots must transport a payload at a constant velocity through an unbounded domain that may contain strictly convex obstacles. The robots are provided only with the target transport velocity, and they do not have global localization or prior information about any obstacles in the environment. Second, decentralized controllers are proposed for position control of collective transport, in which the robots must transport a payload to a target position through a bounded or unbounded domain that may contain convex obstacles. The robots are subject to the same constraints as in the velocity control scenario, except that they are assumed to have global localization. Theoretical guarantees for successful execution of the task are derived using techniques from nonlinear control theory, and it is shown through simulations and physical robot experiments that the transport objectives are achieved with the proposed controllers.
ContributorsFarivarnejad, Hamed (Author) / Berman, Spring (Thesis advisor) / Mignolet, Marc (Committee member) / Tsakalis, Konstantinos (Committee member) / Artemiadis, Panagiotis (Committee member) / Gil, Stephanie (Committee member) / Arizona State University (Publisher)
Created2020
Description
Control algorithm development for quadrotor is usually based solely on rigid body dynamics neglecting aerodynamics. Recent work has demonstrated that such a model is suited only when operating at or near hover conditions and low-speed flight. When operating in confined spaces or during aggressive maneuvers destabilizing forces and moments are

Control algorithm development for quadrotor is usually based solely on rigid body dynamics neglecting aerodynamics. Recent work has demonstrated that such a model is suited only when operating at or near hover conditions and low-speed flight. When operating in confined spaces or during aggressive maneuvers destabilizing forces and moments are induced due to aerodynamic effects. Studies indicate that blade flapping, induced drag, and propeller drag influence forward flight performance while other effects like vortex ring state, ground effect affect vertical flight performance. In this thesis, an offboard data-driven approach is used to derive models for parasitic (bare-airframe) drag and propeller drag. Moreover, thrust and torque coefficients are identified from static bench tests. Among the two, parasitic drag is compensated for in the position controller module in the PX4 firmware. 2-D circular, straight line, and minimum snap rectangular trajectories with corridor constraints are tested exploiting differential flatness property wherein altitude and yaw angle are constant. Flight tests are conducted at ASU Drone Studio and results of tracking performance with default controller and with drag compensated position controller are presented. Root mean squared tracking error in individual axes is used as a metric to evaluate the model performance. Results indicate that, for circular trajectory, the root mean squared error in the x-axis has reduced by 44.54% and in the y-axis by 39.47%. Compensation in turn degrades the tracking in both axis by a maximum under 12% when compared to the default controller for rectangular trajectory case. The x-axis tracking error for the straight-line case has improved by 44.96% with almost no observable change in the y-axis.
ContributorsNolastname, Kashyap Sathyamurthy (Author) / Zhang, Wenlong (Thesis advisor) / Yong, Sze Zheng (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2020