Matching Items (14)

154891-Thumbnail Image.png

Kill zone analysis for a bank-to-turn missile-target engagement

Description

With recent advances in missile and hypersonic vehicle technologies, the need for being able to accurately simulate missile-target engagements has never been greater. Within this research, we examine a

With recent advances in missile and hypersonic vehicle technologies, the need for being able to accurately simulate missile-target engagements has never been greater. Within this research, we examine a fully integrated missile-target engagement environment. A MATLAB based application is developed with 3D animation capabilities to study missile-target engagement and visualize them. The high fidelity environment is used to validate miss distance analysis with the results presented in relevant GNC textbooks and to examine how the kill zone varies with critical engagement parameters; e.g. initial engagement altitude, missile Mach, and missile maximum acceleration. A ray-based binary search algorithm is used to estimate the kill zone region; i.e. the set of initial target starting conditions such that it will be "killed". The results show what is expected. The kill zone increases with larger initial missile Mach and maximum acceleration & decreases with higher engagement altitude and higher target Mach. The environment is based on (1) a 6DOF bank-to-turn (BTT) missile, (2) a full aerodynamic-stability derivative look up tables ranging over Mach number, angle of attack and sideslip angle (3) a standard atmosphere model, (4) actuator dynamics for each of the four cruciform fins, (5) seeker dynamics, (6) a nonlinear autopilot, (7) a guidance system with three guidance algorithms (i.e. PNG, optimal, differential game theory), (8) a 3DOF target model with three maneuverability models (i.e. constant speed, Shelton Turn & Climb, Riggs-Vergaz Turn & Dive). Each of the subsystems are described within the research. The environment contains linearization, model analysis and control design features. A gain scheduled nonlinear BTT missile autopilot is presented here. Autopilot got sluggish as missile altitude increased and got aggressive as missile mach increased. In short, the environment is shown to be a very powerful tool for conducting missile-target engagement research - a research that could address multiple missiles and advanced targets.

Contributors

Agent

Created

Date Created
  • 2016

156523-Thumbnail Image.png

Autonomous Quadrotor Navigation by Detecting Vanishing Points in Indoor Environments

Description

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses various perception and control problems in autonomous aerial

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses various perception and control problems in autonomous aerial robotics. The objective of this thesis is to motivate the use of perspective cues in single images for the planning and control of quadrotors in indoor environments. In addition to providing empirical evidence for the abundance of such cues in indoor environments, the usefulness of these perspective cues is demonstrated by designing a control algorithm for navigating a quadrotor in indoor corridors. An Extended Kalman Filter (EKF), implemented on top of the vision algorithm, serves to improve the robustness of the algorithm to changing illumination.

In this thesis, vanishing points are the perspective cues used to control and navigate a quadrotor in an indoor corridor. Indoor corridors are an abundant source of parallel lines. As a consequence of perspective projection, parallel lines in the real world, that are not parallel to the plane of the camera, intersect at a point in the image. This point is called the vanishing point of the image. The vanishing point is sensitive to the lateral motion of the camera and hence the quadrotor. By tracking the position of the vanishing point in every image frame, the quadrotor can navigate along the center of the corridor.

Experiments are conducted using the Augmented Reality (AR) Drone 2.0. The drone is equipped with the following componenets: (1) 720p forward facing camera for vanishing point detection, (2) 240p downward facing camera, (3) Inertial Measurement Unit (IMU) for attitude control , (4) Ultrasonic sensor for estimating altitude, (5) On-board 1 GHz Processor for processing low level commands. The reliability of the vision algorithm is presented by flying the drone in indoor corridors.

Contributors

Agent

Created

Date Created
  • 2018

158420-Thumbnail Image.png

Ant-Inspired Control Strategies for Collective Transport by Dynamic Multi-Robot Teams with Temporary Leaders

Description

In certain ant species, groups of ants work together to transport food and materials back to their nests. In some cases, the group exhibits a leader-follower behavior in which a

In certain ant species, groups of ants work together to transport food and materials back to their nests. In some cases, the group exhibits a leader-follower behavior in which a single ant guides the entire group based on its knowledge of the destination. In some cases, the leader role is occupied temporarily by an ant, only to be replaced when an ant with new information arrives. This kind of behavior can be very useful in uncertain environments where robot teams work together to transport a heavy or bulky payload. The purpose of this research was to study ways to implement this behavior on robot teams.

In this work, I combined existing dynamical models of collective transport in ants to create a stochastic model that describes these behaviors and can be used to control multi-robot systems to perform collective transport. In this model, each agent transitions stochastically between roles based on the force that it senses the other agents are applying to the load. The agent’s motion is governed by a proportional controller that updates its applied force based on the load velocity. I developed agent-based simulations of this model in NetLogo and explored leader-follower scenarios in which agents receive information about the transport destination by a newly informed agent (leader) joining the team. From these simulations, I derived the mean allocations of agents between “puller” and “lifter” roles and the mean forces applied by the agents throughout the motion.

From the simulation results obtained, we show that the mean ratio of lifter to puller populations is approximately 1:1. We also show that agents using the role update procedure based on forces are required to exert less force than agents that select their role based on their position on the load, although both strategies achieve similar transport speeds.

Contributors

Agent

Created

Date Created
  • 2020

156672-Thumbnail Image.png

A Bio-Inspired Algorithm and Foldable Robot Platform for Collective Excavation

Description

Existing robotic excavation research has been primarily focused on lunar mining missions or simple traffic control in confined tunnels, however little work attempts to bring collective excavation into the realm

Existing robotic excavation research has been primarily focused on lunar mining missions or simple traffic control in confined tunnels, however little work attempts to bring collective excavation into the realm of human infrastructure. This thesis explores a decentralized approach to excavation processes, where traffic laws are borrowed from swarms of fire ants (Solenopsis invicta) or termites (Coptotermes formosanus) to create decision rules for a swarm of robots working together and organizing effectively to create a desired final excavated pattern.

First, a literature review of the behavioral rules of different types of insect colonies and the resulting structural patterns over the course of excavation was conducted. After identifying pertinent excavation laws, three different finite state machines were generated that relate to construction, search and rescue operations, and extraterrestrial exploration. After analyzing these finite state machines, it became apparent that they all shared a common controller. Then, agent-based NetLogo software was used to simulate a swarm of agents that run this controller, and a model for excavating behaviors and patterns was fit to the simulation data. This model predicts the tunnel shapes formed in the simulation as a function of the swarm size and a time delay, called the critical waiting period, in one of the state transitions. Thus, by controlling the individual agents' behavior, it was possible to control the structural outcomes of collective excavation in simulation.

To create an experimental testbed that could be used to physically implement the controller, a small foldable robotic platform was developed, and it's capabilities were tested in granular media. In order to characterize the granular media, force experiments were conducted and parameters were measured for resistive forces during an excavation cycle. The final experiment verified the robot's ability to engage in excavation and deposition, and to determine whether or not to begin the critical waiting period. This testbed can be expanded with multiple robots to conduct small-scale experiments on collective excavation, such as further exploring the effects of the critical waiting period on the resulting excavation pattern. In addition, investigating other factors like tuning digging efficiency or deposition proximity could help to transition the proposed bio-inspired swarm excavation controllers to implementation in real-world applications.

Contributors

Agent

Created

Date Created
  • 2018

155363-Thumbnail Image.png

Scalable control strategies and a customizable swarm robotic platform for boundary coverage and collective transport tasks

Description

Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable

Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable the development of robotic systems that can execute such tasks with a high degree of parallelism and redundancy, enabling effective operation even in the presence of unknown environmental factors and individual robot failures. Social insect colonies provide a rich source of inspiration for these types of control approaches, since they can perform complex collective tasks under a range of conditions. To validate swarm robotic control strategies, experimental testbeds with large numbers of robots are required; however, existing low-cost robots are specialized and can lack the necessary sensing, navigation, control, and manipulation capabilities.

To address these challenges, this thesis presents a formal approach to designing biologically-inspired swarm control strategies for spatially-confined coverage and payload transport tasks, as well as a novel low-cost, customizable robotic platform for testing swarm control approaches. Stochastic control strategies are developed that provably allocate a swarm of robots around the boundaries of multiple regions of interest or payloads to be transported. These strategies account for spatially-dependent effects on the robots' physical distribution and are largely robust to environmental variations. In addition, a control approach based on reinforcement learning is presented for collective payload towing that accommodates robots with heterogeneous maximum speeds. For both types of collective transport tasks, rigorous approaches are developed to identify and translate observed group retrieval behaviors in Novomessor cockerelli ants to swarm robotic control strategies. These strategies can replicate features of ant transport and inherit its properties of robustness to different environments and to varying team compositions. The approaches incorporate dynamical models of the swarm that are amenable to analysis and control techniques, and therefore provide theoretical guarantees on the system's performance. Implementation of these strategies on robotic swarms offers a way for biologists to test hypotheses about the individual-level mechanisms that drive collective behaviors. Finally, this thesis describes Pheeno, a new swarm robotic platform with a three degree-of-freedom manipulator arm, and describes its use in validating a variety of swarm control strategies.

Contributors

Agent

Created

Date Created
  • 2017

155007-Thumbnail Image.png

Modeling and control of a longitudinal platoon of ground robotic vehicles

Description

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several critical modeling, design and control objectives for

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several critical modeling, design and control objectives for ground vehicles. One central objective is formation of multi-robot systems, particularly, longitudinal control of platoon of ground vehicle. In this thesis, the author use low-cost ground robot platform shows that with leader information, the platoon controller can have better performance than one without it.

Based on measurement from multiple vehicles, motor-wheel system dynamic model considering gearbox transmission has been developed. Noticing the difference between on ground vehicle behavior and off-ground vehicle behavior, on ground vehicle-motor model considering friction and battery internal resistance has been put forward and experimentally validated by multiple same type of vehicles. Then simplified longitudinal platoon model based on on-ground test were used as basis for platoon controller design.

Hardware and software has been updated to facilitate the goal of control a platoon of ground vehicles. Based on previous work of Lin on low-cost differential-drive

(DD) RC vehicles called Thunder Tumbler, new robot platform named Enhanced

Thunder Tumbler (ETT 2) has been developed with following improvement: (1) optical wheel-encoder which has 2.5 times higher resolution than magnetic based one,

(2) BNO055 IMU can read out orientation directly that LSM9DS0 IMU could not,

(3) TL-WN722N Wifi USB Adapter with external antenna which can support more stable communication compared to Edimax adapter, (4) duplex serial communication between Pi and Arduino than single direction communication from Pi to Arduino, (5) inter-vehicle communication based on UDP protocol.

All demonstrations presented using ETT vehicles. The following summarizes key hardware demonstrations: (1) cruise-control along line, (2) longitudinal platoon control based on local information (ultrasonic sensor) without inter-vehicle communication, (3) longitudinal platoon control based on local information (ultrasonic sensor) and leader information (speed). Hardware data/video is compared with, and corroborated by, model-based simulations. Platoon simulation and hardware data reveals that with necessary information from platoon leader, the control effort will be reduced and space deviation be diminished among propagation along the fleet of vehicles. In short, many capabilities that are critical for reaching the longer-term FAME goal are demonstrated.

Contributors

Agent

Created

Date Created
  • 2016

152741-Thumbnail Image.png

Novel waypoint generation method for increased mapping efficiency

Description

This project is to develop a new method to generate GPS waypoints for better terrain mapping efficiency using an UAV. To create a map of a desired terrain, an UAV

This project is to develop a new method to generate GPS waypoints for better terrain mapping efficiency using an UAV. To create a map of a desired terrain, an UAV is used to capture images at particular GPS locations. These images are then stitched together to form a complete map of the terrain. To generate a good map using image stitching, the images are desired to have a certain percentage of overlap between them. In high windy condition, an UAV may not capture image at desired GPS location, which in turn interferes with the desired percentage of overlap between images; both frontal and sideways; thus causing discrepancies while stitching the images together. The information about the exact GPS locations at which the images are captured can be found on the flight logs that are stored in the Ground Control Station and the Auto pilot board. The objective is to look at the flight logs, predict the waypoints at which the UAV might have swayed from the desired flight path. If there are locations where flight swayed from intended path, the code should generate a new set of waypoints for a correction flight. This will save the time required for stitching the images together, thus making the whole process faster and more efficient.

Contributors

Agent

Created

Date Created
  • 2014

154497-Thumbnail Image.png

Development and analysis of stochastic boundary coverage strategies for multi-robot systems

Description

Robotic technology is advancing to the point where it will soon be feasible to deploy massive populations, or swarms, of low-cost autonomous robots to collectively perform tasks over large domains

Robotic technology is advancing to the point where it will soon be feasible to deploy massive populations, or swarms, of low-cost autonomous robots to collectively perform tasks over large domains and time scales. Many of these tasks will require the robots to allocate themselves around the boundaries of regions or features of interest and achieve target objectives that derive from their resulting spatial configurations, such as forming a connected communication network or acquiring sensor data around the entire boundary. We refer to this spatial allocation problem as boundary coverage. Possible swarm tasks that will involve boundary coverage include cooperative load manipulation for applications in construction, manufacturing, and disaster response.

In this work, I address the challenges of controlling a swarm of resource-constrained robots to achieve boundary coverage, which I refer to as the problem of stochastic boundary coverage. I first examined an instance of this behavior in the biological phenomenon of group food retrieval by desert ants, and developed a hybrid dynamical system model of this process from experimental data. Subsequently, with the aid of collaborators, I used a continuum abstraction of swarm population dynamics, adapted from a modeling framework used in chemical kinetics, to derive stochastic robot control policies that drive a swarm to target steady-state allocations around multiple boundaries in a way that is robust to environmental variations.

Next, I determined the statistical properties of the random graph that is formed by a group of robots, each with the same capabilities, that have attached to a boundary at random locations. I also computed the probability density functions (pdfs) of the robot positions and inter-robot distances for this case.

I then extended this analysis to cases in which the robots have heterogeneous communication/sensing radii and attach to a boundary according to non-uniform, non-identical pdfs. I proved that these more general coverage strategies generate random graphs whose probability of connectivity is Sharp-P Hard to compute. Finally, I investigated possible approaches to validating our boundary coverage strategies in multi-robot simulations with realistic Wi-fi communication.

Contributors

Agent

Created

Date Created
  • 2016

156952-Thumbnail Image.png

Exploration, Mapping and Scalar Field Estimation using a Swarm of Resource-Constrained Robots

Description

Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping

Robotic swarms can potentially perform complicated tasks such as exploration and mapping at large space and time scales in a parallel and robust fashion. This thesis presents strategies for mapping environmental features of interest – specifically obstacles, collision-free paths, generating a metric map and estimating scalar density fields– in an unknown domain using data obtained by a swarm of resource-constrained robots. First, an approach was developed for mapping a single obstacle using a swarm of point-mass robots with both directed and random motion. The swarm population dynamics are modeled by a set of advection-diffusion-reaction partial differential equations (PDEs) in which a spatially-dependent indicator function marks the presence or absence of the obstacle in the domain. The indicator function is estimated by solving an optimization problem with PDEs as constraints. Second, a methodology for constructing a topological map of an unknown environment was proposed, which indicates collision-free paths for navigation, from data collected by a swarm of finite-sized robots. As an initial step, the number of topological features in the domain was quantified by applying tools from algebraic topology, to a probability function over the explored region that indicates the presence of obstacles. A topological map of the domain is then generated using a graph-based wave propagation algorithm. This approach is further extended, enabling the technique to construct a metric map of an unknown domain with obstacles using uncertain position data collected by a swarm of resource-constrained robots, filtered using intensity measurements of an external signal. Next, a distributed method was developed to construct the occupancy grid map of an unknown environment using a swarm of inexpensive robots or mobile sensors with limited communication. In addition to this, an exploration strategy which combines information theoretic ideas with Levy walks was also proposed. Finally, the problem of reconstructing a two-dimensional scalar field using observations from a subset of a sensor network in which each node communicates its local measurements to its neighboring nodes was addressed. This problem reduces to estimating the initial condition of a large interconnected system with first-order linear dynamics, which can be solved as an optimization problem.

Contributors

Agent

Created

Date Created
  • 2018

156958-Thumbnail Image.png

Trajectory Modeling, Estimation and Interception of a Thrown Ball using a Robotic Ground Vehicle

Description

Toward the ambitious long-term goal of developing a robotic circus, this thesis addresses key steps toward the development of a ground robot that can catch a ball. Toward this end,

Toward the ambitious long-term goal of developing a robotic circus, this thesis addresses key steps toward the development of a ground robot that can catch a ball. Toward this end, we examine nonlinear quadratic drag trajectories for a tossed ball. Relevant least square error fits are provided. It is also shown how a Kalman filter and Extended Kalman filter can be used to generate estimates for the ball trajectory.

Several simple ball intercept policies are examined. This includes open loop and closed loop policies. It is also shown how a low-cost differential-drive research grade robot can be built, modeled and controlled. Directions for developing more complex xy planar intercept policies are also briefly discussed. In short, the thesis establishes a foundation for future work on developing a practical ball catching robot.

Contributors

Agent

Created

Date Created
  • 2018