Matching Items (2)
165562-Thumbnail Image.png
Description

A major hindrance to advances in the care of patients with malignant gliomas is the presence of the blood brain barrier (BBB) and blood-brain tumor barrier (BBTB) that greatly restricts drug access from the plasma to the tumor cells. Bubble-assisted Focused Ultrasound (BAFUS) has proven effective in opening the BBB

A major hindrance to advances in the care of patients with malignant gliomas is the presence of the blood brain barrier (BBB) and blood-brain tumor barrier (BBTB) that greatly restricts drug access from the plasma to the tumor cells. Bubble-assisted Focused Ultrasound (BAFUS) has proven effective in opening the BBB for treatment of glial tumors in adults and pediatric cases. BAFUS has been previously shown to disrupt noninvasively, selectively, and transiently the BBB in small animals in vivo. However, there is a lack of an in vitro preclinical model suitable for testing the genetic determinants of endothelial cell tight junction integrity and vulnerability to the physical disruption. Our BBB organ-on-chip platform will enable precision medicine of brain cancers through identifying patient-specific parameters by which to open the BBB allowing use of drugs and drug combinations otherwise unsuitable. We intend to sequence these in vitro models to verify that the genotype (alleles/SNPs) of tight junction proteins contribute to BBB structure and integrity. To initiate this effort, we report the development of an ultrasound transparent organ-on-chip model populated by iPSC-derived endothelial cells (iPSC-EC) co-cultured with astrocytes. Western blot, immunocytochemistry, and transelectrical endothelial resistance (TEER) studies all convey expression of key EC proteins and marked barrier integrity. Successful iPSC differentiation, tight junction formation, and annotation of tight junction alleles will be presented. Efforts are underway to benchmark device-ultrasound interactions, disruption vulnerability, and determine associations between iPSC-EC genotype and phenotype.

ContributorsIyer, Jayashree (Author) / Acharya, Abhinav (Thesis director) / Berens, Michael E. (Committee member) / Tang, Nanyun (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
128040-Thumbnail Image.png
Description

The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number,

The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p, 8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future therapeutic strategies.

ContributorsSalhia, Bodour (Author) / Kiefer, Jeff (Author) / Ross, Julianna T. D. (Author) / Metapally, Raghu (Author) / Martinez, Rae Anne (Author) / Johnson, Kyle N. (Author) / DiPerna, Danielle M. (Author) / Paquette, Kimberly M. (Author) / Jung, Sungwon (Author) / Nasser, Sara (Author) / Wallstrom, Garrick (Author) / Tembe, Waibhav (Author) / Baker, Angela (Author) / Carpten, John (Author) / Resau, Jim (Author) / Ryken, Timothy (Author) / Sibenaller, Zita (Author) / Petricoin, Emanuel F. (Author) / Liotta, Lance A. (Author) / Ramanathan, Ramesh K. (Author) / Berens, Michael E. (Author) / Tran, Nhan L. (Author) / Biodesign Institute (Contributor)
Created2014-01-29