Matching Items (27)
151589-Thumbnail Image.png
Description
Zeolites are a class of microporous materials that are immensely useful as molecular sieves and catalysts. While there exist millions of hypothetical zeolite topologies, only 206 have been recognized to exist in nature, and the question remains: What distinguishes known zeolite topologies from their hypothetical counterparts? It has been found

Zeolites are a class of microporous materials that are immensely useful as molecular sieves and catalysts. While there exist millions of hypothetical zeolite topologies, only 206 have been recognized to exist in nature, and the question remains: What distinguishes known zeolite topologies from their hypothetical counterparts? It has been found that all 206 of the known zeolites can be represented as networks of rigid perfect tetrahedra that hinge freely at the connected corners. The range of configurations over which the corresponding geometric constraints can be met has been termed the "flexibility window". Only a small percentage of hypothetical types exhibit a flexibility window, and it is thus proposed that this simple geometric property, the existence of a flexibility window, provides a reliable benchmark for distinguishing potentially realizable hypothetical structures from their infeasible counterparts. As a first approximation of the behavior of real zeolite materials, the flexibility window provides additional useful insights into structure and composition. In this thesis, various methods for locating and exploring the flexibility window are discussed. Also examined is the assumption that the tetrahedral corners are force-free. This is a reasonable approximation in silicates for Si-O-Si angles above ~135°. However, the approximation is poor for germanates, where Ge-O-Ge angles are constrained to the range ~120°-145°. Lastly, a class of interesting low-density hypothetical zeolites is evaluated based on the feasibility criteria introduced.
ContributorsDawson, Colby (Author) / Treacy, Michael M. J. (Thesis advisor) / O'Keeffe, Michael (Committee member) / Thorpe, Michael F. (Committee member) / Rez, Peter (Committee member) / Bennett, Peter (Committee member) / Arizona State University (Publisher)
Created2013
149639-Thumbnail Image.png
Description
The research of this dissertation involved quantitative characterization of electrostatic potential and charge distribution of semiconductor nanostructures using off-axis electron holography, as well as other electron microscopy techniques. The investigated nanostructures included Ge quantum dots, Ge/Si core/shell nanowires, and polytype heterostructures in ZnSe nanobelts. Hole densities were calculated for the

The research of this dissertation involved quantitative characterization of electrostatic potential and charge distribution of semiconductor nanostructures using off-axis electron holography, as well as other electron microscopy techniques. The investigated nanostructures included Ge quantum dots, Ge/Si core/shell nanowires, and polytype heterostructures in ZnSe nanobelts. Hole densities were calculated for the first two systems, and the spontaneous polarization for wurtzite ZnSe was determined. Epitaxial Ge quantum dots (QDs) embedded in boron-doped silicon were studied. Reconstructed phase images showed extra phase shifts near the base of the QDs, which was attributed to hole accumulation in these regions. The resulting charge density was (0.03±0.003) holes
m3, which corresponded to about 30 holes localized to a pyramidal, 25-nm-wide Ge QD. This value was in reasonable agreement with the average number of holes confined to each Ge dot determined using a capacitance-voltage measurement. Hole accumulation in Ge/Si core/shell nanowires was observed and quantified using off-axis electron holography and other electron microscopy techniques. High-angle annular-dark-field scanning transmission electron microscopy images and electron holograms were obtained from specific nanowires. The intensities of the former were utilized to calculate the projected thicknesses for both the Ge core and the Si shell. The excess phase shifts measured by electron holography across the nanowires indicated the presence of holes inside the Ge cores. The hole density in the core regions was calculated to be (0.4±0.2)
m3 based on a simplified coaxial cylindrical model. Homogeneous zincblende/wurtzite heterostructure junctions in ZnSe nanobelts were studied. The observed electrostatic fields and charge accumulation were attributed to spontaneous polarization present in the wurtzite regions since the contributions from piezoelectric polarization were shown to be insignificant based on geometric phase analysis. The spontaneous polarization for the wurtzite ZnSe was calculated to be psp = -(0.0029±0.00013) C/m2, whereas a first principles' calculation gave psp = -0.0063 C/m2. The atomic arrangements and polarity continuity at the zincblende/wurtzite interface were determined through aberration-corrected high-angle annular-dark-field imaging, which revealed no polarity reversal across the interface. Overall, the successful outcomes of these studies confirmed the capability of off-axis electron holography to provide quantitative electrostatic information for nanostructured materials.
ContributorsLi, Luying (Author) / McCartney, Martha R. (Thesis advisor) / Smith, David J. (Thesis advisor) / Treacy, Michael J. (Committee member) / Shumway, John (Committee member) / Drucker, Jeffery (Committee member) / Arizona State University (Publisher)
Created2011
132590-Thumbnail Image.png
Description
Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹ hybridized carbon allotropes have been created. The fabricated carbon chain

Carbon allotropes are the basis for many exciting advancements in technology. While sp² and sp³ hybridizations are well understood, the sp¹ hybridized carbon has been elusive. However, with recent advances made using a pulsed laser ablation in liquid technique, sp¹ hybridized carbon allotropes have been created. The fabricated carbon chain is composed of sp¹ and sp³ hybridized bonds, but it also incorporates nanoparticles such as gold or possibly silver to stabilize the chain. The polyyne generated in this process is called pseudocarbyne due to its striking resemblance to the theoretical carbyne. The formation of these carbon chains is yet to be fully understood, but significant progress has been made in determining the temperature of the plasma in which the pseudocarbyne is formed. When a 532 nm pulsed laser with a pulsed energy of 250 mJ and pulse length of 10ns is used to ablate a gold target, a peak temperature of 13400 K is measured. When measured using Laser-Induced Breakdown spectroscopy (LIBS) the average temperature of the neutral carbon plasma over one second was 4590±172 K. This temperature strongly suggests that the current theoretical model used to describe the temperature at which pseudocarbyne generates is accurate.
ContributorsWala, Ryland Gerald (Co-author) / Wala, Ryland (Co-author) / Sayres, Scott (Thesis director) / Steimle, Timothy (Committee member) / Drucker, Jeffery (Committee member) / Historical, Philosophical & Religious Studies (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Physics (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
158158-Thumbnail Image.png
Description
The research of this dissertation has primarily involved using transmission electron microscopy (TEM) techniques to study several semiconductor materials considered promising for future photovoltaic device applications.

Layers of gallium phosphide (GaP) grown on silicon (Si) substrates were characterized by TEM and aberration-corrected scanning transmission electron microscopy (AC-STEM). High defect densities were

The research of this dissertation has primarily involved using transmission electron microscopy (TEM) techniques to study several semiconductor materials considered promising for future photovoltaic device applications.

Layers of gallium phosphide (GaP) grown on silicon (Si) substrates were characterized by TEM and aberration-corrected scanning transmission electron microscopy (AC-STEM). High defect densities were observed for samples with GaP layer thicknesses 250nm and above. Anti-phase boundaries (APBs) within the GaP layers were observed at interfaces with the Si surfaces which were neither atomically flat nor abrupt, contradicting conventional understanding of APB formation.

Microcrystalline-Si (μc-Si) layers grown on crystalline-Si (c-Si) substrates were investigated. Without nanoparticle seeding, an undesired amorphous-Si (a-Si) layer grew below the μc-Si layer. With seeding, the undesired a-Si layer grew above the μc-Si layer, but μc-Si growth proceeded immediately at the c-Si surface. Ellipsometry measurements of percent crystallinity did not match TEM images, but qualitative agreement was found between TEM results and Ultraviolet Raman spectroscopy.

TEM and Xray spectroscopy were used to study metal-induced crystallization and layer exchange for aluminum/ germanium (Al/Ge). Only two samples definitively exhibited both Ge crystallization and layer exchange, and neither process was complete in either sample. The results were finally considered as inconclusive since no reliable path towards layer exchange and crystallization was established.

Plan-view TEM images of indium arsenide (InAs) quantum dots with gallium arsenide antimonide (GaAsSb) spacer layers revealed the termination of some threading dislocations in a sample with spacer-layer thicknesses of 2nm, while a sample with 15-nm-thick spacer layers showed a dense, cross-hatched pattern. Cross-sectional TEM images of samples with 5-nm and 10-nm spacer-layer thicknesses showed less layer undulation in the latter sample. These observations supported photoluminescence (PL) and Xray diffraction (XRD) results, which indicated that GaAsSb spacer layers with 10-nm thickness yielded the highest quality material for photovoltaic device applications.

a-Si/c-Si samples treated by hydrogen plasma were investigated using high-resolution TEM. No obvious structural differences were observed that would account for the large differences measured in minority carrier lifetimes. This key result suggested that other factors such as point defects, hydrogen content, or interface charge must be affecting the lifetimes.
ContributorsBoley, Allison (Author) / Smith, David J. (Thesis advisor) / McCartney, Martha R. (Thesis advisor) / Liu, Jingyue (Committee member) / Bennett, Peter (Committee member) / Arizona State University (Publisher)
Created2020
187414-Thumbnail Image.png
Description
Rare-earth tritellurides (RTe3) are two-dimensional materials with unique quantum properties, ideal for investigating quantum phenomena and applications in supercapacitors, spintronics, and twistronics. This dissertation examines the electronic, magnetic, and phononic properties of the RTe3 family, exploring how these can be controlled using chemical pressure, cationic alloying, and external pressure.The impact

Rare-earth tritellurides (RTe3) are two-dimensional materials with unique quantum properties, ideal for investigating quantum phenomena and applications in supercapacitors, spintronics, and twistronics. This dissertation examines the electronic, magnetic, and phononic properties of the RTe3 family, exploring how these can be controlled using chemical pressure, cationic alloying, and external pressure.The impact of chemical pressure on RTe3 phononic properties was investigated through noninvasive micro-Raman spectroscopy, demonstrating the potential of optical measurements for determining charge density wave (CDW) transition temperatures. Cationic alloying studies showed seamless tuning of CDW transition temperatures by modifying lattice constants and revealed complex magnetism in alloyed RTe3 with multiple magnetic transitions. A comprehensive external pressure study examined the influence of spacing between RTe3 layers on phononic and CDW properties across the RTe3 family. Comparisons between different RTe3 materials showed LaTe3, with the largest thermodynamic equilibrium interlayer spacing (smallest chemical pressure), has the most stable CDW phases at high pressures. Conversely, CDW phases in late RTe3 systems with larger internal chemical pressures were more easily suppressed by applied pressure. The dissertation also investigated Schottky barrier realignment at RTe3/semiconductor interfaces induced by CDW transitions, revealing changes in Schottky barrier height and ideality factor around the CDW transition temperature. This indicates that chemical potential changes of RTe3 below the CDW transition temperature influence Schottky junction properties, enabling CDW state probing through interface property measurements. A detailed experimental and theoretical analysis of the oxidation process of RTe3 compounds was performed, which revealed faster degradation in late RTe3 systems. Electronic property changes, like CDW transition temperature and chemical potential, are observed as degradation progresses. Quantum mechanical simulations suggested that degradation primarily results from strong oxidizing reactions with O2 molecules, while humidity (H2O) plays a negligible role unless Te vacancies exist. Lastly, the dissertation establishes a large-area thin film deposition at relatively low temperatures using a soft sputtering technique. While focused on MoTe2 deposition, this technique may also apply to RTe3 thin film deposition. Overall, this dissertation expands the understanding of the fundamental properties of RTe3 materials and lays the groundwork for potential device applications.
ContributorsYumigeta, Kentaro (Author) / Tongay, Sefaattin (Thesis advisor) / Ponce, Fernando (Committee member) / Drucker, Jeffery (Committee member) / Erten, Onur (Committee member) / Arizona State University (Publisher)
Created2023
187603-Thumbnail Image.png
Description
The performance of accelerator applications like X-ray free electron lasers (XFELs)and ultrafast electron diffraction (UED) and microscopy (UEM) experiments is limited by the brightness of electron beams generated by photoinjectors. In order to maximize the brightness of an electron beam it is essential that electrons are emitted from photocathodes with the smallest possible

The performance of accelerator applications like X-ray free electron lasers (XFELs)and ultrafast electron diffraction (UED) and microscopy (UEM) experiments is limited by the brightness of electron beams generated by photoinjectors. In order to maximize the brightness of an electron beam it is essential that electrons are emitted from photocathodes with the smallest possible mean transverse energy (MTE). Metallic photocathodes hold the record for the smallest MTE ever measured at 5 meV from a Cu(100) single crystal photocathode operated near the photoemission threshold and cooled to 30 K. However such photocathodes have two major limitations: poor surface stability, and a low quantum efficiency (QE) which leads to MTE degrading non-linear photoemission effects when extracting large charge densities. This thesis investigates the efficacy of using a graphene protective layer in order to improve the stability of a Cu(110) single crystalline surface. The contribution to MTE from non-linear photoemission effects is measured from a Cu(110) single crystal photocathode at a variety of excess energies, laser fluences, and laser pulse lengths. To conclude this thesis, the design and research capabilities of the Photocathode and Bright Beams Lab (PBBL) are presented. Such a lab is required to develop cathode technology to mitigate the practical limitations of metallic photocathodes.
ContributorsKnill, Christopher John (Author) / Karkare, Siddharth (Thesis advisor) / Drucker, Jeffery (Committee member) / Kaindl, Robert (Committee member) / Teitelbaum, Samuel (Committee member) / Arizona State University (Publisher)
Created2023
189402-Thumbnail Image.png
Description
The performance of kilometer-scale electron accelerators, which are used for high energy physics and next-generation light sources as well as meter-scale ultra-fast electron diffraction setups is limited by the brightness of electron sources. A potential emerging candidate for such applications is the family of alkali and bi-alkali antimonides. Much of

The performance of kilometer-scale electron accelerators, which are used for high energy physics and next-generation light sources as well as meter-scale ultra-fast electron diffraction setups is limited by the brightness of electron sources. A potential emerging candidate for such applications is the family of alkali and bi-alkali antimonides. Much of the physics of photoemission from such semiconductor photocathodes is not fully understood even today, which poses a hindrance to the complete exploration and optimization of their photoemission properties. This thesis presents the theoretical and experimental measurements which lead to advances in the understanding of the photoemission process and properties of cesium-antimonide photocathodes. First, the growth of high quantum efficiency (QE), atomically smooth and chemically homogeneous Cs$_3$Sb cathodes on lattice-matched strontium titanate substrates (STO) is demonstrated. The roughness-induced mean transverse energies (MTE) simulations indicate that the contribution to MTE from nanoscale surface roughness of Cs$_3$Sb cathodes grown on STO is inconsequential over typically used field gradients in photoinjectors. Second, the formulation of a new approach to model photoemission from cathodes with disordered surfaces is demonstrated. The model is used to explain near-threshold photoemission from thin film Cs$_3$Sb cathodes. This model suggests that the MTE values may get limited to higher values due to the defect density of states near the valence band maximum. Third, the detailed measurements of MTE and kinetic energy distribution spectra along with QE from Cs$_3$Sb cathodes using the photoemission electron microscope are presented. These measurements indicate that Cs$_3$Sb cathodes have a work function in the range of 1.5-1.6 eV. When photoemitting near this work function energy, the MTE nearly converges to the thermal limit of 26 meV. However, the QE is extremely low, of the order of 10$^{-7}$, which limits the operation of these photocathodes for high current applications. Lastly, the growth of Cs$_3$Sb cathodes using the ion beam assisted molecular beam deposition (IBA-MBE) technique is demonstrated. This technique has the potential to grow epitaxial Cs$_3$Sb cathodes in a more reproducible, easier fashion. Structural characterization of such cathodes via tools such as reflection high energy electron diffraction (RHEED) and x-ray diffraction (XRD) will be necessary to investigate the role of the IBA-MBE technique in facilitating the epitaxial, ordered growth of alkali-antimonides.
ContributorsSaha, Pallavi (Author) / Karkare, Siddharth (Thesis advisor) / Bennett, Peter (Committee member) / Nemanich, Robert (Committee member) / Kaindl, Robert (Committee member) / Arizona State University (Publisher)
Created2023