Matching Items (1,852)
Filtering by

Clear all filters

156971-Thumbnail Image.png
Description
Recent advancements in external memory based neural networks have shown promise

in solving tasks that require precise storage and retrieval of past information. Re-

searchers have applied these models to a wide range of tasks that have algorithmic

properties but have not applied these models to real-world robotic tasks. In this

thesis, we present

Recent advancements in external memory based neural networks have shown promise

in solving tasks that require precise storage and retrieval of past information. Re-

searchers have applied these models to a wide range of tasks that have algorithmic

properties but have not applied these models to real-world robotic tasks. In this

thesis, we present memory-augmented neural networks that synthesize robot navigation policies which a) encode long-term temporal dependencies b) make decisions in

partially observed environments and c) quantify the uncertainty inherent in the task.

We extract information about the temporal structure of a task via imitation learning

from human demonstration and evaluate the performance of the models on control

policies for a robot navigation task. Experiments are performed in partially observed

environments in both simulation and the real world
ContributorsSrivatsav, Nambi (Author) / Ben Amor, Hani (Thesis advisor) / Srivastava, Siddharth (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
157016-Thumbnail Image.png
Description
A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware"

A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware" -- i.e. the human task model enables it to envisage desired roles of the human in joint action, while the human mental model allows it to anticipate how its own actions are perceived from the point of view of the human. In my research, I explore how these concepts of human-awareness manifest themselves in the scope of planning or sequential decision making with humans in the loop. To this end, I will show (1) how the AI agent can leverage the human task model to generate symbiotic behavior; and (2) how the introduction of the human mental model in the deliberative process of the AI agent allows it to generate explanations for a plan or resort to explicable plans when explanations are not desired. The latter is in addition to traditional notions of human-aware planning which typically use the human task model alone and thus enables a new suite of capabilities of a human-aware AI agent. Finally, I will explore how the AI agent can leverage emerging mixed-reality interfaces to realize effective channels of communication with the human in the loop.
ContributorsChakraborti, Tathagata (Author) / Kambhampati, Subbarao (Thesis advisor) / Talamadupula, Kartik (Committee member) / Scheutz, Matthias (Committee member) / Ben Amor, Hani (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2018
134066-Thumbnail Image.png
Description
For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier

For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier to entry for the field of robotics and make it exponentially more accessible for people around the world. For our honors thesis, we chose to take the design from BCN3D and attempt to build their robot, to see how accessible the design truly is. Although their designs were not perfect and we were forced to make some adjustments to the 3D files, overall the work put forth by the people at BCN3D was extremely useful in successfully building a robotic arm that is programmed with ease.
ContributorsCohn, Riley (Co-author) / Petty, Charles (Co-author) / Ben Amor, Hani (Thesis director) / Yong, Sze Zheng (Committee member) / Computer Science and Engineering Program (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
133211-Thumbnail Image.png
Description
This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term memory. To address this problem, we proposed that using a Neural Turing Machine (NTM) framework adds long-term memory to the system. We evaluated this approach by using it to master a palindrome task. The network was able to infer how to create a palindrome with 100% accuracy. Since the NTM structure proves useful, we aim to use it in the given scenarios to improve the navigation safety and accuracy of a simulated autonomous car.
ContributorsMartin, Sarah (Author) / Ben Amor, Hani (Thesis director) / Fainekos, Georgios (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
155511-Thumbnail Image.png
Description
The Internet is a major source of online news content. Online news is a form of large-scale narrative text with rich, complex contents that embed deep meanings (facts, strategic communication frames, and biases) for shaping and transitioning standards, values, attitudes, and beliefs of the masses. Currently, this body of narrative

The Internet is a major source of online news content. Online news is a form of large-scale narrative text with rich, complex contents that embed deep meanings (facts, strategic communication frames, and biases) for shaping and transitioning standards, values, attitudes, and beliefs of the masses. Currently, this body of narrative text remains untapped due—in large part—to human limitations. The human ability to comprehend rich text and extract hidden meanings is far superior to known computational algorithms but remains unscalable. In this research, computational treatment is given to online news framing for exposing a deeper level of expressivity coined “double subjectivity” as characterized by its cumulative amplification effects. A visual language is offered for extracting spatial and temporal dynamics of double subjectivity that may give insight into social influence about critical issues, such as environmental, economic, or political discourse. This research offers benefits of 1) scalability for processing hidden meanings in big data and 2) visibility of the entire network dynamics over time and space to give users insight into the current status and future trends of mass communication.
ContributorsCheeks, Loretta H. (Author) / Gaffar, Ashraf (Thesis advisor) / Wald, Dara M (Committee member) / Ben Amor, Hani (Committee member) / Doupe, Adam (Committee member) / Cooke, Nancy J. (Committee member) / Arizona State University (Publisher)
Created2017