Matching Items (13)

128351-Thumbnail Image.png

A Human–Robot Interaction Perspective on Assistive and Rehabilitation Robotics

Description

Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject

Assistive and rehabilitation devices are a promising and challenging field of recent robotics research. Motivated by societal needs such as aging populations, such devices can support motor functionality and subject training. The design, control, sensing, and assessment of the devices become more sophisticated due to a human in the loop. This paper gives a human–robot interaction perspective on current issues and opportunities in the field. On the topic of control and machine learning, approaches that support but do not distract subjects are reviewed. Options to provide sensory user feedback that are currently missing from robotic devices are outlined. Parallels between device acceptance and affective computing are made. Furthermore, requirements for functional assessment protocols that relate to real-world tasks are discussed. In all topic areas, the design of human-oriented frameworks and methods is dominated by challenges related to the close interaction between the human and robotic device. This paper discusses the aforementioned aspects in order to open up new perspectives for future robotic solutions.

Contributors

Created

Date Created
  • 2017-05-23

134066-Thumbnail Image.png

3D Printed Robotic Arm

Description

For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the

For those interested in the field of robotics, there are not many options to get your hands on a physical robot without paying a steep price. This is why the folks at BCN3D Technologies decided to design a fully open-source 3D-printable robotic arm. Their goal was to reduce the barrier to entry for the field of robotics and make it exponentially more accessible for people around the world. For our honors thesis, we chose to take the design from BCN3D and attempt to build their robot, to see how accessible the design truly is. Although their designs were not perfect and we were forced to make some adjustments to the 3D files, overall the work put forth by the people at BCN3D was extremely useful in successfully building a robotic arm that is programmed with ease.

Contributors

Agent

Created

Date Created
  • 2017-12

133211-Thumbnail Image.png

Beyond Deep Learning: Synthesizing Navigation Programs using Neural Turing Machines

Description

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term memory. To address this problem, we proposed that using a Neural Turing Machine (NTM) framework adds long-term memory to the system. We evaluated this approach by using it to master a palindrome task. The network was able to infer how to create a palindrome with 100% accuracy. Since the NTM structure proves useful, we aim to use it in the given scenarios to improve the navigation safety and accuracy of a simulated autonomous car.

Contributors

Agent

Created

Date Created
  • 2018-05

132574-Thumbnail Image.png

Pose Estimation with Convolutional Neural Networks

Description

Convolutional neural networks boast a myriad of applications in artificial intelligence, but one of the most common uses for such networks is image extraction. The ability of convolutional layers to

Convolutional neural networks boast a myriad of applications in artificial intelligence, but one of the most common uses for such networks is image extraction. The ability of convolutional layers to extract and combine data features for the purpose of image analysis can be leveraged for pose estimation on an object - detecting the presence and attitude of corners and edges allows a convolutional neural network to identify how an object is positioned. This task can assist in working to grasp an object correctly in robotics applications, or to track an object more accurately in 3D space. However, the effectiveness of pose estimation may change based on properties of the object; the pose of a complex object, complexity being determined by internal occlusions, similar faces, etcetera, can be difficult to resolve.
This thesis is part of a collaboration between ASU’s Interactive Robotics Laboratory and NASA’s Jet Propulsion Laboratory. In this thesis, the training pipeline from Sharma’s paper “Pose Estimation for Non-Cooperative Spacecraft Rendezvous Using Convolutional Neural Networks” was modified to perform pose estimation on a complex object - specifically, a segment of a hollow truss. After initial attempts to replicate the architecture used in the paper and train solely on synthetic images, a combination of synthetic dataset generation and transfer learning on an ImageNet-pretrained AlexNet model was implemented to mitigate the difficulty of gathering large amounts of real-world data. Experimentation with pose estimation accuracy and hyperparameters of the model resulted in gradual test accuracy improvement, and future work is suggested to improve pose estimation for complex objects with some form of rotational symmetry.

Contributors

Created

Date Created
  • 2019-05

158101-Thumbnail Image.png

Sequencing Behavior in an Intelligent Pro-active Co-Driver System

Description

Driving is the coordinated operation of mind and body for movement of a vehicle, such as a car, or a bus. Driving, being considered an everyday activity for many people,

Driving is the coordinated operation of mind and body for movement of a vehicle, such as a car, or a bus. Driving, being considered an everyday activity for many people, still has an issue of safety. Driver distraction is becoming a critical safety problem. Speed, drunk driving as well as distracted driving are the three leading factors in the fatal car crashes. Distraction, which is defined as an excessive workload and limited attention, is the main paradigm that guides this research area. Driver behavior analysis can be used to address the distraction problem and provide an intelligent adaptive agent to work closely with the driver, fay beyond traditional algorithmic computational models. A variety of machine learning approaches has been proposed to estimate or predict drivers’ fatigue level using car data, driver status or a combination of them.

Three important features of intelligence and cognition are perception, attention and sensory memory. In this thesis, I focused on memory and attention as essential parts of highly intelligent systems. Without memory, systems will only show limited intelligence since their response would be exclusively based on spontaneous decision without considering the effect of previous events. I proposed a memory-based sequence to predict the driver behavior and distraction level using neural network. The work started with a large-scale experiment to collect data and make an artificial intelligence-friendly dataset. After that, the data was used to train a deep neural network to estimate the driver behavior. With a focus on memory by using Long Short Term Memory (LSTM) network to increase the level of intelligence in two dimensions: Forgiveness of minor glitches, and accumulation of anomalous behavior., I reduced the model error and computational expense by adding attention mechanism on the top of LSTM models. This system can be generalized to build and train highly intelligent agents in other domains.

Contributors

Agent

Created

Date Created
  • 2020

156971-Thumbnail Image.png

Training Robot Policies using External Memory Based Networks Via Imitation Learning

Description

Recent advancements in external memory based neural networks have shown promise

in solving tasks that require precise storage and retrieval of past information. Re-

searchers have applied these models to a wide

Recent advancements in external memory based neural networks have shown promise

in solving tasks that require precise storage and retrieval of past information. Re-

searchers have applied these models to a wide range of tasks that have algorithmic

properties but have not applied these models to real-world robotic tasks. In this

thesis, we present memory-augmented neural networks that synthesize robot navigation policies which a) encode long-term temporal dependencies b) make decisions in

partially observed environments and c) quantify the uncertainty inherent in the task.

We extract information about the temporal structure of a task via imitation learning

from human demonstration and evaluate the performance of the models on control

policies for a robot navigation task. Experiments are performed in partially observed

environments in both simulation and the real world

Contributors

Agent

Created

Date Created
  • 2018

158180-Thumbnail Image.png

Neural Network Architecture with External Memory and Domain-aware Weight Switching Mechanism

Description

Humans have an excellent ability to analyze and process information from multiple domains. They also possess the ability to apply the same decision-making process when the situation is familiar with

Humans have an excellent ability to analyze and process information from multiple domains. They also possess the ability to apply the same decision-making process when the situation is familiar with their previous experience.

Inspired by human's ability to remember past experiences and apply the same when a similar situation occurs, the research community has attempted to augment memory with Neural Network to store the previously learned information. Together with this, the community has also developed mechanisms to perform domain-specific weight switching to handle multiple domains using a single model. Notably, the two research fields work independently, and the goal of this dissertation is to combine their capabilities.

This dissertation introduces a Neural Network module augmented with two external memories, one allowing the network to read and write the information and another to perform domain-specific weight switching. Two learning tasks are proposed in this work to investigate the model performance - solving mathematics operations sequence and action based on color sequence identification. A wide range of experiments with these two tasks verify the model's learning capabilities.

Contributors

Agent

Created

Date Created
  • 2020

155511-Thumbnail Image.png

Programmable Insight: A Computational Methodology to Explore Online News Use of Frames

Description

The Internet is a major source of online news content. Online news is a form of large-scale narrative text with rich, complex contents that embed deep meanings (facts, strategic communication

The Internet is a major source of online news content. Online news is a form of large-scale narrative text with rich, complex contents that embed deep meanings (facts, strategic communication frames, and biases) for shaping and transitioning standards, values, attitudes, and beliefs of the masses. Currently, this body of narrative text remains untapped due—in large part—to human limitations. The human ability to comprehend rich text and extract hidden meanings is far superior to known computational algorithms but remains unscalable. In this research, computational treatment is given to online news framing for exposing a deeper level of expressivity coined “double subjectivity” as characterized by its cumulative amplification effects. A visual language is offered for extracting spatial and temporal dynamics of double subjectivity that may give insight into social influence about critical issues, such as environmental, economic, or political discourse. This research offers benefits of 1) scalability for processing hidden meanings in big data and 2) visibility of the entire network dynamics over time and space to give users insight into the current status and future trends of mass communication.

Contributors

Agent

Created

Date Created
  • 2017

155401-Thumbnail Image.png

Mediating Human-Robot Collaboration through Mixed Reality Cues

Description

This work presents a communication paradigm, using a context-aware mixed reality approach, for instructing human workers when collaborating with robots. The main objective of this approach is to utilize the

This work presents a communication paradigm, using a context-aware mixed reality approach, for instructing human workers when collaborating with robots. The main objective of this approach is to utilize the physical work environment as a canvas to communicate task-related instructions and robot intentions in the form of visual cues. A vision-based object tracking algorithm is used to precisely determine the pose and state of physical objects in and around the workspace. A projection mapping technique is used to overlay visual cues on tracked objects and the workspace. Simultaneous tracking and projection onto objects enables the system to provide just-in-time instructions for carrying out a procedural task. Additionally, the system can also inform and warn humans about the intentions of the robot and safety of the workspace. It was hypothesized that using this system for executing a human-robot collaborative task will improve the overall performance of the team and provide a positive experience to the human partner. To test this hypothesis, an experiment involving human subjects was conducted and the performance (both objective and subjective) of the presented system was compared with a conventional method based on printed instructions. It was found that projecting visual cues enabled human subjects to collaborate more effectively with the robot and resulted in higher efficiency in completing the task.

Contributors

Agent

Created

Date Created
  • 2017

158256-Thumbnail Image.png

Differentiable Harvard Machine Architecture with Neural Network Controller

Description

There have been multiple attempts of coupling neural networks with external memory components for sequence learning problems. Such architectures have demonstrated success in algorithmic, sequence transduction, question-answering and reinforcement learning

There have been multiple attempts of coupling neural networks with external memory components for sequence learning problems. Such architectures have demonstrated success in algorithmic, sequence transduction, question-answering and reinforcement learning tasks. Most notable of these attempts is the Neural Turing Machine (NTM), which is an implementation of the Turing Machine with a neural network controller that interacts with a continuous memory. Although the architecture is Turing complete and hence, universally computational, it has seen limited success with complex real-world tasks.

In this thesis, I introduce an extension of the Neural Turing Machine, the Neural Harvard Machine, that implements a fully differentiable Harvard Machine framework with a feed-forward neural network controller. Unlike the NTM, it has two different memories - a read-only program memory and a read-write data memory. A sufficiently complex task is divided into smaller, simpler sub-tasks and the program memory stores parameters of pre-trained networks trained on these sub-tasks. The controller reads inputs from an input-tape, uses the data memory to store valuable signals and writes correct symbols to an output tape. The output symbols are a function of the outputs of each sub-network and the state of the data memory. Hence, the controller learns to load the weights of the appropriate program network to generate output symbols.

A wide range of experiments demonstrate that the Harvard Machine framework learns faster and performs better than the NTM and RNNs like LSTM, as the complexity of tasks increases.

Contributors

Agent

Created

Date Created
  • 2020