Matching Items (2,833)
Filtering by

Clear all filters

151422-Thumbnail Image.png
Description
The Santa Cruz River, in southern Arizona, receives steady inputs of nutrient-enriched treated wastewater (effluent). Previous studies have documented reduced infiltration of surface water in the river. This disruption of hydrologic connectivity, or clogging, can have consequences for groundwater recharge, flows of wastewater in unwanted locations, and potentially even survivorshi

The Santa Cruz River, in southern Arizona, receives steady inputs of nutrient-enriched treated wastewater (effluent). Previous studies have documented reduced infiltration of surface water in the river. This disruption of hydrologic connectivity, or clogging, can have consequences for groundwater recharge, flows of wastewater in unwanted locations, and potentially even survivorship of floodplain riparian vegetation. Clogging can result from biotic processes (microbial or algal growth), abiotic processes (siltation of interstitial spaces), or both. Little is known about clogging in rivers and the environmental factors that regulate their dynamics, so natural field experiments along the Santa Cruz and San Pedro Rivers were used to answer: 1) Are there spatial patterns of hydraulic conductivity in the riverbed downstream from the effluent point-source? 2) Is there temporal variability in hydraulic conductivity and microbial abundance associated with flooding? 3) Are there environmental variables, such as nutrients or stream flow, related to differences in hydraulic conductivity and microbial abundance? To address these questions, a series of sites at increasing distance from two municipal effluent discharge points with differing water quality were selected on the Santa Cruz River and compared with non-effluent control reaches of the San Pedro River. Physical, chemical, and biological parameters were monitored over one year to capture seasonal changes and flood cycles.
ContributorsCase, Natalie (Author) / Stromberg, Juliet (Thesis advisor) / Rock, Channah (Committee member) / Meixner, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
152681-Thumbnail Image.png
Description
Ephemeral streams in Arizona that are perpendicularly intersected by the Central Arizona Project (CAP) canal have been altered due to partial or complete damming of the stream channel. The dammed upstream channels have experienced decades long cycles of sediment deposition and waterlogging during storm events causing the development of "green-up"

Ephemeral streams in Arizona that are perpendicularly intersected by the Central Arizona Project (CAP) canal have been altered due to partial or complete damming of the stream channel. The dammed upstream channels have experienced decades long cycles of sediment deposition and waterlogging during storm events causing the development of "green-up" zones. This dissertation examines the biogeomorphological effects of damming ephemeral streams caused by the CAP canal by investigating: (1) changes in the preexisting spatial cover of riparian vegetation and how these changes are affected by stream geometry; (2) green-up initiation and evolution; and (3) changes in plant species and community level changes. To the author's knowledge, this is the only study that undertakes an interdisciplinary approach to understanding the environmental responses to anthropogenically-altered ephemeral stream channels. The results presented herein show that vegetation along the upstream section increased by an average of 200,872 m2 per kilometer of the CAP canal over a 28 year period. Vegetation growth was compared to channel widths which share a quasi-linear relationship. Remote sensing analysis of Landsat TM images using an object-oriented approach shows that riparian vegetation cover gradually increased over 28 years. Field studies reveal that the increases in vegetation are attributed to the artificial rise in local base-level upstream created by the canal, which causes water to spill laterally onto the desert floor. Vegetation within the green-up zone varies considerably in comparison to pre-canal construction. Changes are most notable in vegetation community shifts and abundance. The wettest section of the green-up zone contains the greatest density of woody plant stems, the greatest vegetation volume, and a high percentage of herbaceous cover. Vegetation within wetter zones changed from a tree-shrub to a predominantly tree-herb assemblage, whereas desert shrubs located in zones with intermediate moisture have developed larger stems. Results from this study lend valuable insight to green-up processes associated with damming ephemeral streams, which can be applied to planning future canal or dam projects in drylands. Also, understanding the development of the green-up zones provide awareness to potentially avoiding flood damage to infrastructure that may be unknowingly constructed within the slow-growing green-up zone.
ContributorsHamdan, Abeer (Author) / Schmeeckle, Mark (Thesis advisor) / Myint, Soe (Thesis advisor) / Dorn, Ronald (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2014
149766-Thumbnail Image.png
Description
Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses,

Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses, and riparian microhabitat characteristics along three reaches (i.e., wildland, urban rehabilitated, and urban disturbed) of the Salt River, Arizona. The surrounding uplands of the two urbanized reaches were dominated by the built environment (i.e., Phoenix metropolitan area). I predicted that greater diversity of microhabitat and lower urbanization would promote herpetofauna abundance, richness, and diversity. In 2010, at each reach, I performed herpetofauna visual surveys five times along eight transects (n=24) spanning the riparian zone. I quantified twenty one microhabitat characteristics such as ground substrate, vegetative cover, woody debris, tree stem density, and plant species richness along each transect. Herpetofauna species richness was the greatest along the wildland reach, and the lowest along the urban disturbed reach. The wildland reach had the greatest diversity indices, and diversity indices of the two urban reaches were similar. Abundance of herpetofauna was approximately six times lower along the urban disturbed reach compared to the two other reaches, which had similar abundances. Principal Component Analysis (PCA) reduced microhabitat variables to five factors, and significant differences among reaches were detected. Vegetation structure complexity, vegetation species richness, as well as densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrows had a positive correlation with at least one of the three herpetofauna community parameter quantified (i.e., herpetofauna abundance, species richness, and diversity indices), and had a positive correlation with at least one herpetofauna species. Overall, rehabilitation activities positively influenced herpetofauna abundance and species richness, whereas urbanization negatively influenced herpetofauna diversity indices. Based on herpetofauna/microhabitat correlations established, I developed recommendations regarding microhabitat features that should be created in order to promote herpetofauna when rehabilitating degraded riparian systems. Recommendations are to plant vegetation of different growth habit, provide woody debris, plant Populus, Salix, and Prosopis of various ages and sizes, and to promote small mammal abundance.
ContributorsBanville, Mélanie Josianne (Author) / Bateman, Heather L (Thesis advisor) / Brady, Ward (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
149717-Thumbnail Image.png
Description
Coal bed natural gas (CBNG) production has become a significant contribution to the nation's energy supply. Large volumes of water are generated as a byproduct of CBNG extraction, of which this "product water" is relatively high in sodium. High sodicity reduces water quality and limits environmentally compliant disposal options for

Coal bed natural gas (CBNG) production has become a significant contribution to the nation's energy supply. Large volumes of water are generated as a byproduct of CBNG extraction, of which this "product water" is relatively high in sodium. High sodicity reduces water quality and limits environmentally compliant disposal options for producers. Crop irrigation with CBNG product water complies with state and federal laws and is a disposal method that also provides a beneficial use to private landowners. However, this disposal method typically requires gypsum and sulfur soil amendments due to the high levels of sodium in the water, which can reduce soil infiltration and hydraulic conductivity. In this study, I tested a new product called Salt Extractor that was marketed to CBNG producers to ameliorate the negative effects of high sodicity. The experiment was conducted in the Powder River Basin of Wyoming. I used a random block design to compare the soil and vegetation properties of plots following application with CBNG product water and treatments of either Salt Extractor, gypsum and sulfur (conventional), or no treatment (control). Data was analyzed by comparing the amount of change between treatments after watering. Results demonstrated the known ability of gypsum and sulfur to lower the relative sodicity of the soil. Plots treated with Salt Extractor, however, did not improve relative levels of sodicity and exhibited no favorable benefits to vegetation.
ContributorsAdams, Shelly (Author) / Hall, Sharon (Thesis advisor) / Chew, Matt (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
151110-Thumbnail Image.png
Description
Urban sustainability is a critical component of sustainable human societies. Urban riparian parks are used here as a case study seeking to understand the social-ecological relationships between the subjective evaluation of ecosystem services and the vision and management of one kind of green infrastructure. This study explored attitudes towards ecosystem

Urban sustainability is a critical component of sustainable human societies. Urban riparian parks are used here as a case study seeking to understand the social-ecological relationships between the subjective evaluation of ecosystem services and the vision and management of one kind of green infrastructure. This study explored attitudes towards ecosystem services, asking whether 1) the tripartite model is an effective framing to measure attitudes towards ecosystem services; 2) what the attitudes towards ecosystem services are and whether they differ between two types of park space; and 3) what the relationship is between management and the attitudinal assessment of ecosystem services by park users. A questionnaire was administered to 104 urban riparian park users in Phoenix, AZ evaluating their attitudes towards refugia, aesthetics, microclimate and stormwater regulation, and recreational and educational opportunities. The operationalization of the tripartite model was validated and found reliable, but may not be the whole story in determining attitudes towards ecosystem services. All components of attitude were positive, but attitudes were stronger in a habitat rehabilitation area with densely planted native species and low flows, than in a more classic park with mowed lawns and scattered vegetation, a mix of native and non-native species, and open water. Park users were more positive towards refugia, stormwater regulation, recreation, and educational opportunities in the habitat rehabilitation area. On the other hand, microclimate regulation and aesthetic qualities were valued similarly between the two parks. Most attitudes supported management goals, however park users valued stormwater regulation less than managers. Qualitative answers suggest that the quality of human interactions differ between the parks and park users consider both elements of society and the physical environment in their subjective evaluations. These findings reveal that park users highly value ecosystem services and that park design and management mediates social-ecological relationships, which should at least underlie the context of economic discussions of service value. This study supports the provision of ecosystem services through green infrastructure and suggests that an integration of park designs throughout urban areas could provide both necessary services as well as expand the platform for social-ecological interactions.
ContributorsWilson, Lea Ione (Author) / Childers, Daniel L. (Thesis advisor) / Larson, Kelli L. (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2012
150826-Thumbnail Image.png
Description
The southwestern willow flycatcher (Empidonax traillii extimus) is listed as an endangered species throughout its range in the southwestern United States. Little is known about its sub-population spatial structure and how this impacts its population viability. In conjunction with being listed as endangered, a recovery plan was produced by the

The southwestern willow flycatcher (Empidonax traillii extimus) is listed as an endangered species throughout its range in the southwestern United States. Little is known about its sub-population spatial structure and how this impacts its population viability. In conjunction with being listed as endangered, a recovery plan was produced by the US Fish and Wildlife Service, with recovery units (sub-populations) roughly based on major river drainages. In the interest of examining this configuration of sub-populations and their impact on the measured population viability, I applied a multivariate auto-regressive state-space model to a spatially extensive time series of abundance data for the southwestern willow flycatcher over the period spanning 1995-2010 estimating critical growth parameters, correlation in environmental stochasticity or "synchronicity" between sub-populations (recovery units) and extinction risk of the sub-populations and the whole. The model estimates two parameters, the mean and variance of annual growth rate. Of the models I tested, I found the strongest support for a population model in which three of the recovery units were grouped (the Lower Colorado, Gila Basin, and Rio Grande recovery units) while keeping all others separate. This configuration has 6.6 times more support for the observed data than a configuration assigning each recovery unit to a separate sub-population, which is how they are circumscribed in the recovery plan. Given the best model, the mean growth rate is -0.0234 (CI95 -0.0939, 0.0412) with a variance of 0.0597 (CI95 0.0115, 0.1134). This growth rate is not significantly different from zero and this is reflected in the low potential for quasi-extinction. The cumulative probability of the population experiencing at least an 80% decline from current levels within 15 years for some sub-populations were much higher (range: 0.129-0.396 for an 80% decline). These results suggest that the rangewide population has a low risk of extinction in the next 15 years and that the formal recovery units specified by the original recovery plan do not correspond to proper sub-population units as defined by population synchrony.
ContributorsDockens, Patrick E. T. (Author) / Sabo, John (Thesis advisor) / Stromberg, Juliet (Committee member) / Fenichel, Eli (Committee member) / Arizona State University (Publisher)
Created2012