Matching Items (2,828)
Filtering by

Clear all filters

151673-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the cases of emerging technologies, where data is unavailable and rapid technological advances outstrip environmental knowledge. Previous studies have demonstrated several shortcomings to existing practices, including the masking of environmental impacts, the difficulty of selecting appropriate weight sets for multi-stakeholder problems, and difficulties in exploration of variability and uncertainty. In particular, there is an acute need for decision-driven interpretation methods that can guide decision makers towards making balanced, environmentally sound decisions in instances of high uncertainty. We propose the first major methodological innovation in LCA since early establishment of LCA as the analytical perspective of choice in problems of environmental management. We propose to couple stochastic multi-criteria decision analytic tools with existing approaches to inventory building and characterization to create a robust approach to comparative technology assessment in the context of high uncertainty, rapid technological change, and evolving stakeholder values. Namely, this study introduces a novel method known as Stochastic Multi-attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Landis, Amy E. (Committee member) / Chester, Mikhail (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
152721-Thumbnail Image.png
Description
In vitro, or cultured, meat refers to edible skeletal muscle and fat tissue grown from animal stem cells in a laboratory or factory. It is essentially meat that does not require an animal to be killed. Although it is still in the research phase of development, claims of its potential

In vitro, or cultured, meat refers to edible skeletal muscle and fat tissue grown from animal stem cells in a laboratory or factory. It is essentially meat that does not require an animal to be killed. Although it is still in the research phase of development, claims of its potential benefits range from reducing the environmental impacts of food production to improving human health. However, technologies powerful enough to address such significant challenges often come with unintended consequences and a host of costs and benefits that seldom accrue to the same actors. In extreme cases, they can even be destabilizing to social, institutional, economic, and cultural systems. This investigation explores the sustainability implications of cultured meat before commercial facilities are established, unintended consequences are realized, and undesirable effects become reified and locked in. The study utilizes expert focus groups to explore the social implications, life cycle analysis to project the environmental implications, and economic input-output assessment to explore tradeoffs between conventionally-produced meat and factory-grown food products. The results suggest that, should cultured meat be widely adopted by consumers, food is likely to be increasingly a product of human design, perhaps becoming integrated into existing human institutions such as health care delivery and education. Environmentally, cultured meat could require smaller quantities of agricultural inputs and land than livestock. However, those avoided costs could come at the expense of more intensive energy use as biological processes are replaced with industrial systems. Finally, the research found that, since livestock production is a driver of significant economic activity, shifting away from traditional meat production in favor of cultured meat production could result in a net economic contraction.
ContributorsMattick, Carolyn Sue (Author) / Allenby, Braden R. (Thesis advisor) / Landis, Amy E. (Committee member) / Wetmore, Jameson M. (Committee member) / Arizona State University (Publisher)
Created2014
152935-Thumbnail Image.png
Description
Overall, biofuels play a significant role in future energy sourcing and deserve thorough researching and examining for their best use in achieving sustainable goals. National and state policies are supporting biofuel production as a sustainable option without a holistic view of total impacts. The analysis from this research connects to

Overall, biofuels play a significant role in future energy sourcing and deserve thorough researching and examining for their best use in achieving sustainable goals. National and state policies are supporting biofuel production as a sustainable option without a holistic view of total impacts. The analysis from this research connects to policies based on life cycle sustainability to identify other environmental impacts beyond those specified in the policy as well as ethical issues that are a concern. A Life cycle assessment (LCA) of switchgrass agriculture indicates it will be challenging to meet U.S. Renewable Fuel Standards with only switchgrass cellulosic ethanol, yet may be used for California's Low Carbon Fuel Standard. Ethical dilemmas in food supply, land conservation, and water use can be connected to biofuel production and will require evaluation as policies are created. The discussions around these ethical dilemmas should be had throughout the process of biofuel production and policy making. Earth system engineering management principles can help start the discussions and allow anthropocentric and biocentric viewpoints to be heard.
ContributorsHarden, Cheyenne (Author) / Landis, Amy E. (Thesis advisor) / Allenby, Braden (Committee member) / Khanna, Vikas (Committee member) / Arizona State University (Publisher)
Created2014
152839-Thumbnail Image.png
Description
Natural rubber and rubber products can be produced from the guayule plant (Parthenium argentatum Gray), which is a low input perennial shrub native to Mexico and the American Southwest. Guayule rubber has the potential to replace Hevea (Hevea brasiliensis) rubber, the most common natural rubber, and synthetic rubber, which is

Natural rubber and rubber products can be produced from the guayule plant (Parthenium argentatum Gray), which is a low input perennial shrub native to Mexico and the American Southwest. Guayule rubber has the potential to replace Hevea (Hevea brasiliensis) rubber, the most common natural rubber, and synthetic rubber, which is derived from petroleum, in a wide variety of products, including automobile tires. Rubbers make up approximately 47% of the analyzed conventional passenger tire's weight, with 31% from synthetic rubber and 16% from natural Hevea rubber. Replacing the current rubber sources used for the tire industry with guayule rubber could help reduce dependency on imported rubber in addition to reducing greenhouse gas emissions. Moreover, residues from guayule rubber are being researched as a bioenergy feedstock to further improve the environmental footprint of guayule rubber products. This study used life cycle assessment (LCA), a useful tool to determine environmental impacts from a product or process, to quantify and compare environmental impacts of the raw material extraction, transportation and manufacturing of a conventional and a guayule rubber based passenger tire. The impact results of this comparative LCA identified the major environmental impacts and contributing process and informed how the impacts from the tire production can be reduced through utilization of natural rubber co-products as electricity off-sets and reducing guayule rubber's environmental impacts through agricultural and transportation modifications. Results showed that tire raw material extraction contributed the majority of impacts in all categories, where the production of guayule rubber for guayule tires, and the production of synthetic rubber for conventional tires, were the main contributors. Guayule rubber impacts occurred mainly from electricity consumption for agricultural irrigation, while synthetic rubber is a petroleum-based material resulting in high impacts. Transportation impacts had little significance compared to other stages in the life cycle, except for smog impacts, which occurred mainly from truck transport for guayule tires, and transoceanic transport for conventional tires. Tire manufacturing impacts occurred mainly from electricity use in the facilities and were reduced with the use of guayule rubber in guayule tires.
ContributorsRasutis, Daina (Author) / Landis, Amy E. (Thesis advisor) / Colvin, Howard (Committee member) / Seager, Thomas P. (Committee member) / Arizona State University (Publisher)
Created2014