Matching Items (3,796)
Filtering by

Clear all filters

129349-Thumbnail Image.png
Description

We present the first Murchison Widefield Array observations of the well-known cluster of galaxies Abell 3667 (A3667) between 105 and 241 MHz. A3667 is one of the best known examples of a galaxy cluster hosting a double radio relic and has been reported to contain a faint radio halo and bridge.

We present the first Murchison Widefield Array observations of the well-known cluster of galaxies Abell 3667 (A3667) between 105 and 241 MHz. A3667 is one of the best known examples of a galaxy cluster hosting a double radio relic and has been reported to contain a faint radio halo and bridge. The origin of radio haloes, relics and bridges is still unclear, however galaxy cluster merger seems to be an important factor. We clearly detect the north-west (NW) and south-east radio relics in A3667 and find an integrated flux density at 149 MHz of 28.1 ± 1.7 and 2.4 ± 0.1 Jy, respectively, with an average spectral index, between 120 and 1400 MHz, of −0.9 ± 0.1 for both relics. We find evidence of a spatial variation in the spectral index across the NW relic steepening towards the centre of the cluster, which indicates an ageing electron population. These properties are consistent with higher frequency observations. We detect emission that could be associated with a radio halo and bridge. However, due to the presence of poorly sampled large-scale Galactic emission and blended point sources we are unable to verify the exact nature of these features.

ContributorsHindson, L. (Author) / Johnston-Hollitt, M. (Author) / Hurley-Walker, N. (Author) / Buckley, K. (Author) / Morgan, J. (Author) / Carretti, E. (Author) / Dwarakanath, K. S. (Author) / Bell, M. (Author) / Bernardi, G. (Author) / Bhat, N. D. R. (Author) / Bowman, Judd (Author) / Briggs, F. (Author) / Cappallo, R. J. (Author) / Corey, B. E. (Author) / Deshpande, A. A. (Author) / Emrich, D. (Author) / Ewall-Wice, A. (Author) / Feng, L. (Author) / Gaensler, B. M. (Author) / Goeke, R. (Author) / Greenhill, L. J. (Author) / Hazelton, B. J. (Author) / Jacobs, Daniel (Author) / Kaplan, D. L. (Author) / Kasper, J. C. (Author) / Kratzenberg, E. (Author) / Kudryavtseva, N. (Author) / Lenc, E. (Author) / Lonsdale, C. J. (Author) / Lynch, M. J. (Author) / McWhirter, S. R. (Author) / McKinley, B. (Author) / Mitchell, D. A. (Author) / Morales, M.F. (Author) / Morgan, E. (Author) / Oberoi, D. (Author) / Ord, S.M. (Author) / Pindor, B. (Author) / Prabu, T. (Author) / Procopio, P. (Author) / Offringa, A. R. (Author) / Riding, J. (Author) / Rogers, A.E.E. (Author) / Roshi, A. (Author) / Udaya Shankar, N. (Author) / Srivani, K.S. (Author) / Subrahmanyan, R. (Author) / Tingay, S.J. (Author) / Waterson, M. (Author) / Wayth, R. B. (Author) / Webster, R.L. (Author) / Whitney, A.R. (Author) / Williams, A. (Author) / Williams, C.L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-21
129341-Thumbnail Image.png
Description

In this work we complete a model independent analysis of dark matter constraining its mass and interaction strengths with data from astro- and particle physics experiments. We use the effective field theory framework to describe interactions of thermal dark matter particles of the following types: real and complex scalars, Dirac

In this work we complete a model independent analysis of dark matter constraining its mass and interaction strengths with data from astro- and particle physics experiments. We use the effective field theory framework to describe interactions of thermal dark matter particles of the following types: real and complex scalars, Dirac and Majorana fermions, and vector bosons. Using Bayesian inference we calculate posterior probability distributions for the mass and interaction strengths for the various spin particles. The observationally favoured dark matter particle mass region is 10-100 GeV with effective interactions that have a cut-off at 0.1-1 TeV. This mostly comes from the requirement that the thermal abundance of dark matter not exceed the observed value. Thus thermal dark matter coupled with present data implies new physics most likely under 10 TeV.

ContributorsBalazs, Csaba (Author) / Li, Tong (Author) / Newstead, Jayden (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-11
129340-Thumbnail Image.png
Description

The adsorption of amino acids on silica surfaces has attracted considerable interest because it has a broad range of applications in various fields such as drug delivery, solid-phase peptide synthesis, and biocompatible materials synthesis. In this work, we systematically study lysine adsorption on fumed silica nanoparticles with thermal analysis and

The adsorption of amino acids on silica surfaces has attracted considerable interest because it has a broad range of applications in various fields such as drug delivery, solid-phase peptide synthesis, and biocompatible materials synthesis. In this work, we systematically study lysine adsorption on fumed silica nanoparticles with thermal analysis and solid-state NMR. Thermogravimetric analysis results show that the adsorption behavior of lysine in low-concentration aqueous solutions is well-described by the Langmuir isotherm. With ultrafast magic-angle-spinning 1H NMR and multinuclear and multidimensional 13C and 15N solid-state NMR, we successfully determine the protonation state of bulk lysine and find that lysine is adsorbed on silica nanoparticle surfaces through the side-chain amine groups. Density functional theory calculations carried out on lysine and lysine–silanol complex structures further confirm that the side-chain amine groups interact with the silica surface hydroxyl groups via strong hydrogen bonding. Furthermore, we find that lysine preferentially has monolayer coverage on silica surfaces in high salt concentration solutions because of the ionic complexes formed with surface bound lysine molecules.

ContributorsGuo, Chengchen (Author) / Holland, Gregory P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-06
129339-Thumbnail Image.png
Description

Psidium occidentale from Colombia and Ecuador is described and illustrated. It is compared with its presumed closest relatives, and differs from them by its larger leaves and multi-flowered inflorescences. It generally grows at lower elevations than these other species. Its conservation status is evaluated.

ContributorsLandrum, Leslie (Author) / Parra-O, Carlos (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129333-Thumbnail Image.png
Description

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene output at the post-transcriptional level by targeting degenerate elements primarily in 3′untranslated regions (3′UTRs) of mRNAs. Individual miRNAs can regulate networks of hundreds of genes, yet for the majority of miRNAs few, if any, targets are known. Misexpression of miRNAs is

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene output at the post-transcriptional level by targeting degenerate elements primarily in 3′untranslated regions (3′UTRs) of mRNAs. Individual miRNAs can regulate networks of hundreds of genes, yet for the majority of miRNAs few, if any, targets are known. Misexpression of miRNAs is also a major contributor to cancer progression, thus there is a critical need to validate miRNA targets in high-throughput to understand miRNAs' contribution to tumorigenesis. Here we introduce a novel high-throughput assay to detect miRNA targets in 3′UTRs, called Luminescent Identification of Functional Elements in 3′UTRs (3′LIFE). We demonstrate the feasibility of 3′LIFE using a data set of 275 human 3′UTRs and two cancer-relevant miRNAs, let-7c and miR-10b, and compare our results to alternative methods to detect miRNA targets throughout the genome. We identify a large number of novel gene targets for these miRNAs, with only 32% of hits being bioinformatically predicted and 27% directed by non-canonical interactions. Functional analysis of target genes reveals consistent roles for each miRNA as either a tumor suppressor (let-7c) or oncogenic miRNA (miR-10b), and preferentially target multiple genes within regulatory networks, suggesting 3′LIFE is a rapid and sensitive method to detect miRNA targets in high-throughput.

ContributorsWolter, Justin (Author) / Kotagama, Kasuen (Author) / Pierre-Bez, Alexandra C. (Author) / Firago, Mari (Author) / Mangone, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-29
129482-Thumbnail Image.png
Description

Background: Long-lived marine megavertebrates (e.g. sharks, turtles, mammals, and seabirds) are inherently vulnerable to anthropogenic mortality. Although some mathematical models have been applied successfully to manage these animals, more detailed treatments are often needed to assess potential drivers of population dynamics. In particular, factors such as age-structure, density-dependent feedbacks on reproduction,

Background: Long-lived marine megavertebrates (e.g. sharks, turtles, mammals, and seabirds) are inherently vulnerable to anthropogenic mortality. Although some mathematical models have been applied successfully to manage these animals, more detailed treatments are often needed to assess potential drivers of population dynamics. In particular, factors such as age-structure, density-dependent feedbacks on reproduction, and demographic stochasticity are important for understanding population trends, but are often difficult to assess. Lemon sharks (Negaprion brevirostris) have a pelagic adult phase that makes them logistically difficult to study. However, juveniles use coastal nursery areas where their densities can be high.

Results: We use a stage-structured, Markov-chain stochastic model to describe lemon shark population dynamics from a 17-year longitudinal dataset at a coastal nursery area at Bimini, Bahamas. We found that the interaction between delayed breeding, density-dependence, and demographic stochasticity accounts for 33 to 49% of the variance in population size.

Conclusions: Demographic stochasticity contributed all random effects in this model, suggesting that the existence of unmodeled environmental factors may be driving the majority of interannual population fluctuations. In addition, we are able to use our model to estimate the natural mortality rate of older age classes of lemon sharks that are difficult to study. Further, we use our model to examine what effect the length of a time series plays on deciphering ecological patterns. We find that—even with a relatively long time series—our sampling still misses important rare events. Our approach can be used more broadly to infer population dynamics of other large vertebrates in which age structure and demographic stochasticity are important.

ContributorsWhite, Easton (Author) / Nagy, John (Author) / Gruber, Samuel H. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-18
129480-Thumbnail Image.png
Description

Hong Kong Observatory currently uses a series of meteorological instruments, including long-range LIDAR (light detection and ranging) systems, to provide alerting services of low-level windshear and turbulence for Hong Kong International Airport. For some events that are smaller in spatial dimensions and are rapidly changing, such as low altitude windshear

Hong Kong Observatory currently uses a series of meteorological instruments, including long-range LIDAR (light detection and ranging) systems, to provide alerting services of low-level windshear and turbulence for Hong Kong International Airport. For some events that are smaller in spatial dimensions and are rapidly changing, such as low altitude windshear and turbulence associated with buildings or man-made structures, it would be necessary to involve meteorological instruments that offer greater spatial resolution. Therefore, the Observatory has set up a short-range LIDAR on the roof of the AsiaWorld-Expo during the summers over the past several years, conducting field research on the feasibility of strengthening early alerting for windshear and turbulence over the north runway’s eastern arrival runway (Runway 25RA) and developing an automated early alerting algorithm. This paper takes the pilot reports for Runway 25RA during the 2013 field research as verification samples, using different thresholds for radial wind velocity spatial and temporal changes detected by the short-range LIDAR to calculate the relative operating characteristic (ROC) curve, and analyzes its early alerting performance.

ContributorsHon, K. K. (Author) / Chan, P. W. (Author) / Chiu, Y. Y. (Author) / Tang, Wenbo (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129478-Thumbnail Image.png
Description

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission

Errors in the specification or utilization of fossil fuel CO2 emissions within carbon budget or atmospheric CO2 inverse studies can alias the estimation of biospheric and oceanic carbon exchange. A key component in the simulation of CO2 concentrations arising from fossil fuel emissions is the spatial distribution of the emission near coastlines. Regridding of fossil fuel CO2 emissions (FFCO2) from fine to coarse grids to enable atmospheric transport simulations can give rise to mismatches between the emissions and simulated atmospheric dynamics which differ over land or water. For example, emissions originally emanating from the land are emitted from a grid cell for which the vertical mixing reflects the roughness and/or surface energy exchange of an ocean surface. We test this potential "dynamical inconsistency" by examining simulated global atmospheric CO2 concentration driven by two different approaches to regridding fossil fuel CO2 emissions. The two approaches are as follows: (1) a commonly used method that allocates emissions to grid cells with no attempt to ensure dynamical consistency with atmospheric transport and (2) an improved method that reallocates emissions to grid cells to ensure dynamically consistent results. Results show large spatial and temporal differences in the simulated CO2 concentration when comparing these two approaches. The emissions difference ranges from −30.3 TgC grid cell-1 yr-1 (−3.39 kgC m-2 yr-1) to +30.0 TgC grid cell-1 yr-1 (+2.6 kgC m-2 yr-1) along coastal margins. Maximum simulated annual mean CO2 concentration differences at the surface exceed ±6 ppm at various locations and times. Examination of the current CO2 monitoring locations during the local afternoon, consistent with inversion modeling system sampling and measurement protocols, finds maximum hourly differences at 38 stations exceed ±0.10 ppm with individual station differences exceeding −32 ppm. The differences implied by not accounting for this dynamical consistency problem are largest at monitoring sites proximal to large coastal urban areas and point sources. These results suggest that studies comparing simulated to observed atmospheric CO2 concentration, such as atmospheric CO2 inversions, must take measures to correct for this potential problem and ensure flux and dynamical consistency.

ContributorsZhang, X. (Author) / Gurney, Kevin (Author) / Rayner, P. (Author) / Liu, Y. (Author) / Asefi-Najafabady, Salvi (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129471-Thumbnail Image.png
Description

Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis,

Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.

ContributorsHutchins, Elizabeth (Author) / Markov, Glenn (Author) / Eckalbar, Walter (Author) / George, Rajani (Author) / King, Jesse M. (Author) / Tokuyama, Minami (Author) / Geiger, Lauren A. (Author) / Emmert, Nataliya (Author) / Ammar, Michael J. (Author) / Allen, April N. (Author) / Siniard, Ashley L. (Author) / Corneveaux, Jason J. (Author) / Fisher, Rebecca (Author) / Wade, Juli (Author) / DeNardo, Dale (Author) / Rawls, Alan (Author) / Huentelman, Matthew J. (Author) / Wilson-Rawls, Jeanne (Author) / Kusumi, Kenro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-20
129468-Thumbnail Image.png
Description

The reinforcers that maintain target instrumental responses also reinforce other responses that compete with them for expression. This competition, and its imbalance at points of transition between different schedules of reinforcement, causes behavioral contrast. The imbalance is caused by differences in the rates at which different responses come under the

The reinforcers that maintain target instrumental responses also reinforce other responses that compete with them for expression. This competition, and its imbalance at points of transition between different schedules of reinforcement, causes behavioral contrast. The imbalance is caused by differences in the rates at which different responses come under the control of component stimuli. A model for this theory of behavioral contrast is constructed by expanding the coupling coefficient of MPR (Killeen, 1994). The coupling coefficient gives the degree of association of a reinforcer with the target response (as opposed to other competing responses). Competing responses, often identified as interim or adjunctive or superstitious behavior, are intrinsic to reinforcement schedules, especially interval schedules. In addition to that base-rate of competition, additional competing responses may spill over from the prior component, causing initial contrast; and they may be modulated by conditioned reinforcement or punishment from stimuli associated with subsequent component change, causing terminal contrast. A formalization of these hypotheses employed (a) a hysteresis model of off-target responses giving rise to initial contrast, and (b) a competing traces model of the suppression or enhancement of ongoing competitive responses by signals of following-schedule transition. The theory was applied to transient contrast, the following schedule effect, and the component duration effect.

ContributorsKilleen, Peter (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-01