Matching Items (2,840)
Filtering by

Clear all filters

152050-Thumbnail Image.png
Description
In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group)

In 1959, Iwasawa proved that the size of the $p$-part of the class groups of a $\mathbb{Z}_p$-extension grows as a power of $p$ with exponent ${\mu}p^m+{\lambda}\,m+\nu$ for $m$ sufficiently large. Broadly, I construct conditions to verify if a given $m$ is indeed sufficiently large. More precisely, let $CG_m^i$ (class group) be the $\epsilon_i$-eigenspace component of the $p$-Sylow subgroup of the class group of the field at the $m$-th level in a $\mathbb{Z}_p$-extension; and let $IACG^i_m$ (Iwasawa analytic class group) be ${\mathbb{Z}_p[[T]]/((1+T)^{p^m}-1,f(T,\omega^{1-i}))}$, where $f$ is the associated Iwasawa power series. It is expected that $CG_m^i$ and $IACG^i_m$ be isomorphic, providing us with a powerful connection between algebraic and analytic techniques; however, as of yet, this isomorphism is unestablished in general. I consider the existence and the properties of an exact sequence $$0\longrightarrow\ker{\longrightarrow}CG_m^i{\longrightarrow}IACG_m^i{\longrightarrow}\textrm{coker}\longrightarrow0.$$ In the case of a $\mathbb{Z}_p$-extension where the Main Conjecture is established, there exists a pseudo-isomorphism between the respective inverse limits of $CG_m^i$ and $IACG_m^i$. I consider conditions for when such a pseudo-isomorphism immediately gives the existence of the desired exact sequence, and I also consider work-around methods that preserve cardinality for otherwise. However, I primarily focus on constructing conditions to verify if a given $m$ is sufficiently large that the kernel and cokernel of the above exact sequence have become well-behaved, providing similarity of growth both in the size and in the structure of $CG_m^i$ and $IACG_m^i$; as well as conditions to determine if any such $m$ exists. The primary motivating idea is that if $IACG_m^i$ is relatively easy to work with, and if the relationship between $CG_m^i$ and $IACG_m^i$ is understood; then $CG_m^i$ becomes easier to work with. Moreover, while the motivating framework is stated concretely in terms of the cyclotomic $\mathbb{Z}_p$-extension of $p$-power roots of unity, all results are generally applicable to arbitrary $\mathbb{Z}_p$-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet abstracted, algebraic results on maps between inverse limits.
ContributorsElledge, Shawn Michael (Author) / Childress, Nancy (Thesis advisor) / Bremner, Andrew (Committee member) / Fishel, Susanna (Committee member) / Jones, John (Committee member) / Paupert, Julien (Committee member) / Arizona State University (Publisher)
Created2013
153445-Thumbnail Image.png
Description
In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and Schneps independently adapted Sinnott's techniques to the case of $p$-adic

In 1984, Sinnott used $p$-adic measures on $\mathbb{Z}_p$ to give a new proof of the Ferrero-Washington Theorem for abelian number fields by realizing $p$-adic $L$-functions as (essentially) the $Gamma$-transform of certain $p$-adic rational function measures. Shortly afterward, Gillard and Schneps independently adapted Sinnott's techniques to the case of $p$-adic $L$-functions associated to elliptic curves with complex multiplication (CM) by realizing these $p$-adic $L$-functions as $Gamma$-transforms of certain $p$-adic rational function measures. The results in the CM case give the vanishing of the Iwasawa $mu$-invariant for certain $mathbb{Z}_p$-extensions of imaginary quadratic fields constructed from torsion points of CM elliptic curves.

In this thesis, I develop the theory of $p$-adic measures on $mathbb{Z}_p^d$, with particular interest given to the case of $d>1$. Although I introduce these measures within the context of $p$-adic integration, this study includes a strong emphasis on the interpretation of $p$-adic measures as $p$-adic power series. With this dual perspective, I describe $p$-adic analytic operations as maps on power series; the most important of these operations is the multivariate $Gamma$-transform on $p$-adic measures.

This thesis gives new significance to product measures, and in particular to the use of product measures to construct measures on $mathbb{Z}_p^2$ from measures on $mathbb{Z}_p$. I introduce a subring of pseudo-polynomial measures on $mathbb{Z}_p^2$ which is closed under the standard operations on measures, including the $Gamma$-transform. I obtain results on the Iwasawa-invariants of such pseudo-polynomial measures, and use these results to deduce certain continuity results for the $Gamma$-transform. As an application, I establish the vanishing of the Iwasawa $mu$-invariant of Yager's two-variable $p$-adic $L$-function from measure theoretic considerations.
ContributorsZinzer, Scott Michael (Author) / Childress, Nancy (Thesis advisor) / Bremner, Andrew (Committee member) / Fishel, Susanna (Committee member) / Jones, John (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2015