Matching Items (3)
Filtering by

Clear all filters

135829-Thumbnail Image.png
Description
Isotopic analyses of archaeological and modern materials are commonly used to reconstruct diet, climate, and habitat. This study analyzes 15 camelid samples from three sites (two archaeological, one modern) in South America to determine their carbon and nitrogen isotopic values to further explore the relationship between stable isotopes and environments.

Isotopic analyses of archaeological and modern materials are commonly used to reconstruct diet, climate, and habitat. This study analyzes 15 camelid samples from three sites (two archaeological, one modern) in South America to determine their carbon and nitrogen isotopic values to further explore the relationship between stable isotopes and environments. Camelid individuals in the modern site of Cuenca, Ecuador had a diet of almost entirely C3 vegetation, while those in Chen Chen, Peru had slightly higher values, still consistent with C3 plants. Those in the higher altitude site of Pumapunku, Bolivia had higher δ13C values than expected, indicating they may have been foddered with a mixed diet. These isotopic data indicate that vegetation, and therefore herbivore diets, are influenced by altitude. Additionally, it was found that a positive linear relationship exists between δ15N values and aridity of a site. Results indicate that aspects of the environment such as aridity are reflected in isotopic signatures. These results contribute to the increasing amount of data on isotopic variation in South American camelids, both modern and archaeological.
ContributorsSpencer, Katherine Clare (Author) / Knudson, Kelly (Thesis director) / Reed, Kaye (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136980-Thumbnail Image.png
Description
Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional

Many of the derived features of the human skeleton can be divided into two adaptive suites: traits related to bipedalism and traits related to encephalization. The cervical spine connects these adaptive suites and is itself unique in its marked lordosis. I approach human cervical evolution from three directions: the functional significance of cervical curvature, the identification of cervical lordosis in osteological material, and the representation of the cervical spine in the hominin fossil record.
ContributorsFatica, Lawrence Martin (Author) / Kimbel, William (Thesis director) / Reed, Kaye (Committee member) / Schwartz, Gary (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
132576-Thumbnail Image.png
Description
This study was conducted in order to determine whether the lagomorphs of 111 Ranch- Aztlanolagus agilis, Hypolagus arizonensis, and Sylvilagus cunicularius- could be distinguished based on femora. This is because while there is a large quantity of disarticulated lagomorph postcranial fossils from 111 Ranch, the chief diagnostic traits of A.

This study was conducted in order to determine whether the lagomorphs of 111 Ranch- Aztlanolagus agilis, Hypolagus arizonensis, and Sylvilagus cunicularius- could be distinguished based on femora. This is because while there is a large quantity of disarticulated lagomorph postcranial fossils from 111 Ranch, the chief diagnostic traits of A. agilis and H. arizonensis are the enamel patterns on their third premolars, leaving a large swath of specimens unidentifiable by diagnostic traits alone. Specimens from the Arizona Museum of Natural History were measured and compared to specimens known to be from these genera. Additionally, morphological traits in mandibles were used to identify mandible specimens, which in turn were used to identify fossils with the same specimen label. Statistical tests such as t-tests and principal components analyses were used to examine the distributions of sizes and locate clusters of datapoints likely corresponding to each genus. Some of these could be linked to a genus based on one particular specimen, P15156, which had been identified as Hypolagus based on its mandible morphology and size. The majority of the Museum'a specimens were thus associated with one of the three species, save for those which were too damaged and intermediate in size to confidently categorize.
ContributorsTkacik, Stephanie Marie (Author) / Farmer, Jack (Thesis director) / Reed, Kaye (Committee member) / McCord, Robert (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05