Matching Items (2)
Filtering by

Clear all filters

141472-Thumbnail Image.png
Description

The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to

The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012–2014 HSPDP coring campaign.

ContributorsCohen, A. (Author) / Campisano, Christopher (Author) / Arrowsmith, Ramon (Author) / Asrat, A. (Author) / Behrensmeyer, A. K. (Author) / Deino, A. (Author) / Feibel, C. (Author) / Hill, A. (Author) / Johnson, R. (Author) / Kingston, J. (Author) / Lamb, H. (Author) / Lowenstein, T. (Author) / Noren, A. (Author) / Olago, D. (Author) / Owen, R. B. (Author) / Potts, R. (Author) / Reed, Kaye (Author) / Renaut, R. (Author) / Schabitz, F. (Author) / Tiercelin, J.-J. (Author) / Trauth, M. H. (Author) / Wynn, J. (Author) / Ivory, S. (Author) / Brady, K. (Author) / O'Grady, R. (Author) / Rodysill, J. (Author) / Githiri, J. (Author) / Russell, J. (Author, Author) / Foerster, V. (Author) / Dommain, R. (Author) / Rucina, S. (Author) / Deocampo, D. (Author) / Billingsley, A. (Author) / Beck, C. (Author) / Dorenbeck, G. (Author) / Dullo, L. (Author) / Feary, David (Author) / Garello, Dominique (Author) / Gromig, R. (Author) / Johnson, T. (Author) / Junginger, A. (Author) / Karanja, M. (Author) / Kimburi, E. (Author) / Mbuthia, A. (Author) / McCartney, T. (Author) / McNulty, E. (Author) / Muiruri, V. (Author) / Nambiro, E. (Author) / Negash, E. W. (Author) / Njagi, D. (Author) / Wilson, J. N. (Author) / Rabideaux, N. (Author) / Raub, T. (Author) / Sier, M. J. (Author) / Smith, P. (Author) / Urban, J. (Author) / Warren, M. (Author) / Yadeta, M. (Author) / Yost, C. (Author) / Zinaye, B. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-19
141486-Thumbnail Image.png
Description

We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition,

We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.

ContributorsKamilar, Jason (Author) / Beaudrot, Lydia (Author) / Reed, Kaye (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-15