Matching Items (1,615)
Filtering by

Clear all filters

152098-Thumbnail Image.png
Description
Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a

Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned envelope types. Energy consumption data, along with various other details, such as building floor area, areas of walls, columns, beams etc. and their material types were imported into Life-Cycle Assessment software called ATHENA impact estimator for buildings. Using this four-stepped LCA methodology, the results showed that the Steel Stud envelope performed the best and less environmental impact compared to other envelope types. This research methodology can be applied to other building typologies.
ContributorsRamachandran, Sriranjani (Author) / Bryan, Harvey (Thesis advisor) / Reddy T, Agami (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
151673-Thumbnail Image.png
Description
Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the

Life Cycle Assessment (LCA) quantifies environmental impacts of products in raw material extraction, processing, manufacturing, distribution, use and final disposal. The findings of an LCA can be used to improve industry practices, to aid in product development, and guide public policy. Unfortunately, existing approaches to LCA are unreliable in the cases of emerging technologies, where data is unavailable and rapid technological advances outstrip environmental knowledge. Previous studies have demonstrated several shortcomings to existing practices, including the masking of environmental impacts, the difficulty of selecting appropriate weight sets for multi-stakeholder problems, and difficulties in exploration of variability and uncertainty. In particular, there is an acute need for decision-driven interpretation methods that can guide decision makers towards making balanced, environmentally sound decisions in instances of high uncertainty. We propose the first major methodological innovation in LCA since early establishment of LCA as the analytical perspective of choice in problems of environmental management. We propose to couple stochastic multi-criteria decision analytic tools with existing approaches to inventory building and characterization to create a robust approach to comparative technology assessment in the context of high uncertainty, rapid technological change, and evolving stakeholder values. Namely, this study introduces a novel method known as Stochastic Multi-attribute Analysis for Life Cycle Impact Assessment (SMAA-LCIA) that uses internal normalization by means of outranking and exploration of feasible weight spaces.
ContributorsPrado, Valentina (Author) / Seager, Thomas P (Thesis advisor) / Landis, Amy E. (Committee member) / Chester, Mikhail (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2013
152810-Thumbnail Image.png
Description
Industrial activities have damaged the natural environment at an unprecedented scale. A number of approaches to environmentally responsible design and sustainability have been developed that are aimed at minimizing negative impacts derived from products on the environment. Environmental assessment methods exist as well to measure these impacts. Major environmentally responsible

Industrial activities have damaged the natural environment at an unprecedented scale. A number of approaches to environmentally responsible design and sustainability have been developed that are aimed at minimizing negative impacts derived from products on the environment. Environmental assessment methods exist as well to measure these impacts. Major environmentally responsible approaches to design and sustainability were analyzed using content analysis techniques. The results show several recommendations to minimize product impacts through design, and dimensions to which they belong. Two products made by a manufacturing firm with exceptional commitment to environmental responsibility were studied to understand how design approaches and assessment methods were used in their development. The results showed that the company used several strategies for environmentally responsible design as well as assessment methods in product and process machine design, both of which resulted in reduced environmental impacts of their products. Factors that contributed positively to reduce impacts are the use of measurement systems alongside environmentally responsible design, as well as inspiring innovations by observing how natural systems work. From a managerial perspective, positive influencing factors included a commitment to environmental responsibility from the executive level of the company and a clear vision about sustainability that has been instilled from the top through every level of employees. Additionally, a high degree of collaboration between the company and its suppliers and customers was instrumental in making the success possible.
ContributorsHuerta Gajardo, Oscar André (Author) / Giard, Jacques (Thesis advisor) / White, Philip (Committee member) / Dooley, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
152925-Thumbnail Image.png
Description
Currently, consumers throw away products every day, turning those materials into waste. Electronic waste poses special problems when it is not recycled because it may contain toxic components that can leach into landfill surroundings and reach groundwater sources or contaminate soil, and its plastic, metal, and electronic materials do not

Currently, consumers throw away products every day, turning those materials into waste. Electronic waste poses special problems when it is not recycled because it may contain toxic components that can leach into landfill surroundings and reach groundwater sources or contaminate soil, and its plastic, metal, and electronic materials do not biodegrade and are lost rather than recycled. This study analyzes a system that attempts to solve the electronic post-consumer-waste problem by shifting the economic burden of disposal from local municipalities to producers, reducing its environmental impacts while promoting economic development. The system was created in British Columbia, Canada after the province enacted a recycling regulation based on Extended Producer Responsibility (EPR), a policy strategy that is fast growing globally. The BC recycling regulation requires all e-toy corporations in BC to comply with a government-approved product-stewardship program to recover and dispose of e-toys after they have been discarded by consumers. In response to the regulation, e-toy corporations joined a Canadian non-profit entity that recycles regulated waste. I conducted a case study using in-depth interviews with the stakeholders to identify the outcomes of this program and its potential for replication in other industries. I derived lessons from which corporations can learn to implement stewardship programs based on EPR regulations. The e-toy program demonstrated that creating exclusive programs is neither efficient nor economically feasible. Corporations should expect low recycling rates in the first phases of the program implementation because EPR regulations are long-term strategies. In order to reach any conclusions about the demand of consumers for recycling programs, we need to measure the program's return rates during at least three years. I also derived lessons that apply to the expansion of EPR regulations to a broader scope of product categories. The optimal way to expand EPR policy is to do it by gradually adding new product categories to the regulation on a long-term schedule. By doing so, new categories can take advantage of existing stewardship programs and their infrastructure to recover and recycle the post-consumer products. EPR proved to be an effective option to make corporations start thinking about the end of life of their products.
ContributorsNemer Soto, Andrea (Author) / Dooley, Kevin (Thesis advisor) / Basile, George (Committee member) / White, Philip (Committee member) / Arizona State University (Publisher)
Created2014
149888-Thumbnail Image.png
Description
ABSTRACT In an attempt to advocate body-conscious design and healing work environments, this research study of holistic health in the workplace explores cognitive, social and physical well-being in four small US offices that are between 1000 and 4000 square feet and employ three to twelve employees. Holistic health, as pursued

ABSTRACT In an attempt to advocate body-conscious design and healing work environments, this research study of holistic health in the workplace explores cognitive, social and physical well-being in four small US offices that are between 1000 and 4000 square feet and employ three to twelve employees. Holistic health, as pursued in this research, includes social health, emotional health and physical health. These three factors of holistic health have been identified and investigated in this study: biophilia: peoples' love and affiliation with other species and the natural environment; ergonomics: the relationship between the human body, movement, the immediate environment and productivity; and exercise: exertion of the body to obtain physical fitness. This research study proposes that employees and employers of these four participating workplaces desire mobility and resources in the workplace that support holistic health practices involving biophilia, ergonomics, and exercise. Literature review of holistic health and the holistic health factors of this research topic support the idea that interaction with other species can be healing, ergonomic body-conscious furniture and equipment increase productivity, limit body aches, pains and health costs; and exercise stimulates the mind and body, increasing productivity. This study has been conducted primarily with qualitative and flexible research approaches using observation, survey, interview and pedometer readings as methods for data collection. Two small corporate franchise financial institutions and two small private healthcare providers from both Arizona and Georgia participated in this study. Each office volunteered one employer and two employee participants. Of the holistic health factors considered in these four case studies, this study found that a majority of participants equally valued emotional health, social health and physical health. A majority of participants declared a preference for workplace environments with serene natural environments with outdoor spaces and interaction with other species, work environments with body-conscious furniture, equipment and workstations, as well as exercise space and equipment. As these particular workplace environments affirmed value for elements of the factors biophilia, ergonomics and exercise, all three factors are considered valueable within the workplaces of these case studies. Furthermore, factors that were said to contribute to personal productivity in participating workplaces were found as well as sacrifices that participants stated they would be willing to make in order to implement their preferred work environment(s). In addition, this study recorded and calculated average miles walked by participants in each workplace as well as existing incentives and descriptions of ideal work environments. Implications of this research study involve interior design, industrial design and fashion design that can accommodate the desires of the four participating workplaces. Major design implications involve accommodating these particular workplaces to provide personnel with opportunities for holistic health in working environments. More specific implications of office related design involve providing access to natural environments, body-conscious equipment and spaces, as well as opportunities for exercise and social interaction. These elements of the factors biophilia, ergonomics and exercise were found to be said to contribute to cognitive, social and physical health.
ContributorsMcEwan, April (Author) / White, Philip (Thesis advisor) / Shraiky, James (Committee member) / Barry, Rebecca (Committee member) / Arizona State University (Publisher)
Created2011
149726-Thumbnail Image.png
Description
In recent years, the length of time people use and keep belongings has decreased. With the acceptance of short-lived furniture and inexpensive replacements, the American mentality has shifted to thinking that discarding furniture is normal, often in the guise of recycling. Americans are addicted to landfills. The high cost of

In recent years, the length of time people use and keep belongings has decreased. With the acceptance of short-lived furniture and inexpensive replacements, the American mentality has shifted to thinking that discarding furniture is normal, often in the guise of recycling. Americans are addicted to landfills. The high cost of landfill real estate and other considerable ecological impacts created by the manufacturing of furniture should persuade people to give their belongings a longer life, but in reality, furniture is often prematurely discarded. This grounded theory study takes a multi-method approach to analyze why some types of furniture are kept longer and to theorize about new ways to design and sell furniture that lasts well past its warranty. Case studies bring new insight into designer intention, manufacturer intent, the world of auction-worthy collectables and heirlooms, why there is a booming second-hand furniture market and the growing importance of informed interior designers and architects who specify or help clients choose interior furnishings. An environmental life cycle assessment compares how the length of furniture life affects environmental impacts. A product's life could continue for generations if properly maintained. Designers and manufacturers hoping to promote longevity can apply the conclusions of this report in bringing new pieces to the market that have a much longer life span. This study finds areas of opportunity that promote user attachment, anticipate future repurposing, and provide services. This thinking envisions a paradigm for furniture that can re-invent itself over multiple generations of users, and ultimately lead to a new wave of desirable heirloom furniture.
ContributorsIngham, Sarah (Author) / White, Philip (Thesis advisor) / Wolf, Peter (Committee member) / Underhill, Michael (Committee member) / Arizona State University (Publisher)
Created2011
156388-Thumbnail Image.png
Description
The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance

The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance from a mutated protein; this process occurs when the MarR regulates an operon. We hypothesized that different transcriptional regulator genes have interactions with each other. It is known that Salmonella pagC transcription is activated by three regulators, i.e., SlyA, MprA, and PhoP. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) system was used to research the protein-protein interactions in SlyA, MprA, and PhoP as heterodimers and homodimers in vivo. Two fragments, T25 and T18, that lack endogenous adenylate cyclase activity, were used for construction of chimeric proteins and reconstruction of adenylate cyclase activity was tested. The significant adenylate cyclase activities has proved that SlyA is able to form homodimers. However, weak adenylate cyclase activities in this study has proved that MprA and PhoP are not likely to form homodimers, and no protein-protein interactions were detected in between SlyA, MprA and PhoP, which no heterodimers have formed in between three transcriptional regulators.
ContributorsTao, Zenan (Author) / Shi, Yixin (Thesis advisor) / Wang, Xuan (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2018
157426-Thumbnail Image.png
Description
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses.

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses. The prrAB TCS is essential in Mtb, thus representing an auspicious drug target; however, the inability to generate an Mtb ΔprrAB mutant complicates investigating how this TCS contributes to pathogenesis. Mycobacterium smegmatis, a commonly used M. tuberculosis genetic surrogate was used here. This work shows that prrAB is not essential in M. smegmatis. During ammonium stress, the ΔprrAB mutant excessively accumulates triacylglycerol lipids, a phenotype associated with M. tuberculosis dormancy and chronic infection. Additionally, triacylglycerol biosynthetic genes were induced in the ΔprrAB mutant relative to the wild-type and complementation strains during ammonium stress. Next, RNA-seq was used to define the M. smegmatis PrrAB regulon. PrrAB regulates genes participating in respiration, metabolism, redox balance, and oxidative phosphorylation. The M. smegmatis ΔprrAB mutant is compromised for growth under hypoxia, is hypersensitive to cyanide, and fails to induce high-affinity respiratory genes during hypoxia. Furthermore, PrrAB positively regulates the hypoxia-responsive dosR TCS response regulator, potentially explaining the hypoxia-mediated growth defects in the ΔprrAB mutant. Despite inducing genes encoding the F1F0 ATP synthase, the ΔprrAB mutant accumulates significantly less ATP during aerobic, exponential growth compared to the wild-type and complementation strains. Finally, the M. smegmatis ΔprrAB mutant exhibited growth impairment in media containing gluconeogenic carbon sources. M. tuberculosis mutants unable to utilize these substrates fail to establish chronic infection, suggesting that PrrAB may regulate Mtb central carbon metabolism in response to chronic infection. In conclusion, 1) prrAB is not universally essential in mycobacteria; 2) M. smegmatis PrrAB regulates genetic responsiveness to nutrient and oxygen stress; and 3) PrrAB may provide feed-forward control of the DosRS TCS and dormancy phenotypes. The data generated in these studies provide insight into the mycobacterial PrrAB TCS transcriptional regulon, PrrAB essentiality in Mtb, and how PrrAB may mediate stresses encountered by Mtb during the transition to chronic infection.
ContributorsMaarsingh, Jason (Author) / Haydel, Shelley E (Thesis advisor) / Roland, Kenneth (Committee member) / Sandrin, Todd (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2019
156522-Thumbnail Image.png
Description
One out of ten women has a difficult time getting or staying pregnant in the United States. Recent studies have identified aging as one of the key factors attributed to a decline in female reproductive health. Existing fertility diagnostic methods do not allow for the non-invasive monitoring of hormone levels

One out of ten women has a difficult time getting or staying pregnant in the United States. Recent studies have identified aging as one of the key factors attributed to a decline in female reproductive health. Existing fertility diagnostic methods do not allow for the non-invasive monitoring of hormone levels across time. In recent years, olfactory sensing has emerged as a promising diagnostic tool for its potential for real-time, non-invasive monitoring. This technology has been proven promising in the areas of oncology, diabetes, and neurological disorders. Little work, however, has addressed the use of olfactory sensing with respect to female fertility. In this work, we perform a study on ten healthy female subjects to determine the volatile signature in biological samples across 28 days, correlating to fertility hormones. Volatile organic compounds (VOCs) present in the air above the biological sample, or headspace, were collected by solid phase microextraction (SPME), using a 50/30 µm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coated fiber. Samples were analyzed, using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). A regression model was used to identify key analytes, corresponding to the fertility hormones estrogen and progesterone. Results indicate shifts in volatile signatures in biological samples across the 28 days, relevant to hormonal changes. Further work includes evaluating metabolic changes in volatile hormone expression as an early indicator of declining fertility, so women may one day be able to monitor their reproductive health in real-time as they age.
ContributorsOng, Stephanie (Author) / Smith, Barbara (Thesis advisor) / Bean, Heather (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
133345-Thumbnail Image.png
Description
The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase

The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase the dosage of currently prescribed antibiotics. This study attempted to combat two forms of antibiotic resistance. The first is the AcrAB efflux pump which is able to pump antibiotics out of the cell. The second is the biofilms that E. coli can form. By using an inhibitor, the pump should be unable to rid itself of an antibiotic. On the other hand, using Tween allows for biofilm formation to either be disrupted or for the biofilm to be dissolved. By combining these two chemicals with an antibiotic that the efflux pump is known to expel, low concentrations of each chemical should result in an equivalent or greater effect on bacteria compared to any one chemical in higher concentrations. To test this hypothesis a 96 well plate BEC screen test was performed. A range of antibiotics were used at various concentrations and with varying concentrations of both Tween and the inhibitor to find a starting point. Following this, Erythromycin and Ciprofloxacin were picked as the best candidates and the optimum range of the antibiotic, Tween, and inhibitor were established. Finally, all three chemicals were combined to observe the effects they had together as opposed to individually or paired together. From the results of this experiment several conclusions were made. First, the inhibitor did in fact increase the effectiveness of the antibiotic as less antibiotic was needed if the inhibitor was present. Second, Tween showed an ability to prevent recovery in the MBEC reading, showing that it has the ability to disrupt or dissolve biofilms. However, Tween also showed a noticeable decrease in effectiveness in the overall treatment. This negative interaction was unable to be compensated for when using the inhibitor and so the hypothesis was proven false as combining the three chemicals led to a less effective treatment method.
ContributorsPetrovich Flynn, Chandler James (Author) / Misra, Rajeev (Thesis director) / Bean, Heather (Committee member) / Perkins, Kim (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05