Matching Items (9)

151709-Thumbnail Image.png

The effects of artificial water sources on small mammal communities

Description

Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain

Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of five AWS and five paired control sites (treatments) in the surrounding Sonoran desert from October 2011 to May 2012. I measured plant species richness, density, and percent cover in the spring of 2012. A Multi-response Permutation Procedure was used to identify differences in small mammal community abundance, biomass, and species richness by season and treatment. I used Principle Component Analysis to reduce 11 habitat characteristics to five habitat factors. I related rodent occurrence to habitat characteristics using multiple and logistic regression. A total of 370 individual mammals representing three genera and eight species of rodents were captured across 4800 trap nights. Desert pocket mouse (Chaetodipus penicillatus) was the most common species in both seasons and treatments. Whereas rodent community abundance, biomass, and richness were similar between seasons, community variables of AWS were greater than CS. Rodent diversity was similar between treatments. Desert pocket mouse abundance and biomass were twice as high at AWS when compared to controls. Biomass of white-throated woodrat (Neotoma albigula) was five times greater at AWS. Habitat characteristics were similar between treatments. Neither presence of water nor distance to water explained substantial habitat variation. Occurrence of rodent species was associated with habitat characteristics. Desert rodent communities are adapted for arid environments (i.e. Heteromyids) and are not dependent on "free water". Higher abundances of desert pocket mouse at AWS were most likely related to increased disturbance and debris and not the presence of water. The results of this study and previous studies suggest that more investigation is needed and that short term studies may not be able to detect interactions (if any) between AWS and desert small mammal communities.

Contributors

Agent

Created

Date Created
  • 2013

151334-Thumbnail Image.png

Sonoran desert tortoise (Gopherus morafkai) growth and juvenile habitat selection at a long-term study site in central Arizona, USA

Description

Biological diversity is threatened by increasing anthropogenic modification of natural environments and increasing demands on natural resources. Sonoran desert tortoises (Gopherus morafkai) currently have Candidate status under the Endangered Species

Biological diversity is threatened by increasing anthropogenic modification of natural environments and increasing demands on natural resources. Sonoran desert tortoises (Gopherus morafkai) currently have Candidate status under the Endangered Species Act (ESA) based on health and habitat threats. To ensure this animal persists in the midst of multiple threats requires an understanding of the life history and ecology of each population. I looked at one physiological and one behavioral aspect of a population of tortoises at the Sugarloaf Mountain (SL) study site in central Arizona, USA. I used 21 years of capture-recapture records to estimate growth parameters of the entire population. I investigated habitat selection of juvenile tortoises by selecting 117 locations of 11 tortoises that had been tracked by radio-telemetry one to three times weekly for two years, selecting locations from both summer active season and during winter hibernation. I compared 22 microhabitat variables of tortoise locations to random SL locations to determine habitat use and availability. Male tortoises at SL reach a greater asymptotic length than females, and males and females appear to grow at the same rate. Juvenile tortoises at the SL site use steep rocky hillsides with high proportions of sand and annual vegetation, few succulents, and enclosed shelters in summer. They use enclosed shelters on steep slopes for winter hibernation. An understanding of these features can allow managers to quantify Sonoran desert tortoise habitat needs and life history characteristics and to understand the impact of land use policies.

Contributors

Agent

Created

Date Created
  • 2012

157704-Thumbnail Image.png

Longitudinal trends of bird community richness and abundance over fifteen years in the northern reaches of the sonoran desert

Description

Although many studies have identified environmental factors as primary drivers of bird richness and abundance, there is still uncertainty about the extent to which climate, topography and vegetation influence richness

Although many studies have identified environmental factors as primary drivers of bird richness and abundance, there is still uncertainty about the extent to which climate, topography and vegetation influence richness and abundance patterns seen in local extents of the northern Sonoran Desert. I investigated how bird richness and abundance differed between years and seasons and which environmental variables most influenced the patterns of richness and abundance in the Greater Phoenix Metropolitan Area.

I compiled a geodatabase of climate, bioclimatic (interactions between precipitation and temperature), vegetation, soil, and topographical variables that are known to influence both richness and abundance and used 15 years of bird point count survey data from urban and non-urban sites established by Central Arizona–Phoenix Long-Term Ecological Research project to test that relationship. I built generalized linear models (GLM) to elucidate the influence of each environmental variable on richness and abundance values taken from 47 sites. I used principal component analysis (PCA) to reduce 43 environmental variables to 9 synthetic factors influenced by measures of vegetation, climate, topography, and energy. I also used the PCA to identify uncorrelated raw variables and modeled bird richness and abundance with these uncorrelated environmental variables (EV) with GLM.

I found that bird richness and abundance were significantly different between seasons, but that richness and winter abundance were not significantly different across years. Bird richness was most influenced by soil characteristics and vegetation while abundance was most influenced by vegetation and climate. Models using EV as independent variables consistently outperformed those models using synthetically produced components from PCA. The results suggest that richness and abundance are both driven by climate and aspects of vegetation that may also be influenced by climate such as total annual precipitation and average temperature of the warmest quarter. Annual oscillations of bird richness and abundance throughout the urban Phoenix area seem to be strongly associated with climate and vegetation.

Contributors

Agent

Created

Date Created
  • 2019

153267-Thumbnail Image.png

Herpetofauna community responses to saltcedar (Tamarix spp.) biological control and riparian restoration along a Mojave Desert stream, U.S.A

Description

In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was

In riparian ecosystems, reptiles and amphibians are good indicators of environmental conditions. Herpetofauna have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. My objective was to relate herpetofauna abundance to changes in riparian habitat along the Virgin River caused by the Tamarix biological control agent, Diorhabda carinulata, and riparian restoration.

During 2013 and 2014, vegetation and herpetofauna were monitored at 21 riparian locations along the Virgin River via trapping and visual encounter surveys. Study sites were divided into four stand types based on density and percent cover of dominant trees (Tamarix, Prosopis, Populus, and Salix) and presence of restoration activities: Tam, Tam-Pros, Tam-Pop/Sal, and Restored Tam-Pop/Sal. Restoration activities consisted of mechanical removal of non-native trees, transplanting native trees, and introduction of water flow. All sites were affected by biological control. I predicted that herpetofauna abundance would vary between stand types and that herpetofauna abundance would be greatest in Restored Tam-Pop/Sal sites due to increased habitat openness and variation following restoration efforts.

Results from trapping indicated that Restored Tam-Pop/Sal sites had three times more total lizard and eight times more Sceloporus uniformis captures than other stand types. Anaxyrus woodhousii abundance was greatest in Tam-Pop/Sal and Restored Tam-Pop/Sal sites. Visual encounter surveys indicated that herpetofauna abundance was greatest in the Restored Tam-Pop/Sal site compared to the adjacent Unrestored Tam-Pop/Sal site. Habitat variables were reduced to six components using a principle component analysis and significant differences were detected among stand types. Restored Tam-Pop/Sal sites were most similar to Tam-Pop/Sal sites. S. uniformis were positively associated with large woody debris and high densities of Populus, Salix, and large diameter Prosopis.

Restored Tam-Pop/Sal sites likely supported higher abundances of herpetofauna, as these areas exhibited greater habitat heterogeneity. Restoration activities created a mosaic habitat by reducing canopy cover and increasing native tree density and surface water. Natural resource managers should consider implementing additional restoration efforts following biological control when attempting to restore riparian areas dominated by Tamarix and other non-native trees.

Contributors

Agent

Created

Date Created
  • 2014

158562-Thumbnail Image.png

Rock-dwelling Spiny Lizards Take Advantage of Human-disturbed Habitat in the Trans-Mexican Volcanic Belt

Description

Human land use and land cover change alter key features of the landscape that may favor habitat selection by some species. Lizards are especially sensitive to these alterations because they

Human land use and land cover change alter key features of the landscape that may favor habitat selection by some species. Lizards are especially sensitive to these alterations because they rely on their external environment for regulating their body temperature. However, because of their diverse life-history traits and strategies, some are able to respond well to disturbance by using their habitat in various ways. To understand how they use their habitat and how human modifications may impact their ability to do this, biologists must identify where they occur and the habitat characteristics on which they depend. Therefore, I used species occupancy modeling to determine (1) whether disturbance predicts the presence of two sympatric congeneric (species of the same genus) lizard species Sceloporus grammicus and S. torquatus, and (2) which habitat characteristics are essential for predicting their occupancy and detection. I focused my study in central Mexico, a region of prevalent land use and land cover change. Here, I conducted visual encounter and habitat surveys at 100 1-hectare sites during the spring of 2019. I measured vegetation and ground cover, average tree diameter, and abundance of refuges. I recorded air temperature, relative humidity, and elevation. I summarized sites as either undisturbed or disturbed, based on the presence of human development. I also summarized sites by ecosystem type, desert or forest, based on vegetation composition (i.e., desert-adapted vs. non-desert-adapted plants), evidence of remnant forest, air temperature, and relative humidity. I found that S. torquatus was more likely to be present in disturbed habitat, whereas S. grammicus was more likely to be present in areas with leaf litter, tree cover, and woody debris. S. torquatus was twice as likely to be detected in forests than deserts, and S. grammicus was more likely to be detected at sites with high elevation and high relative humidity, low temperature, and herbaceous and grass cover. These results emphasize the utility of species occupancy modeling for estimating detection and occupancy in dynamic landscapes.

Contributors

Agent

Created

Date Created
  • 2020

158622-Thumbnail Image.png

It All Comes Out in the Wash: Mammal Use of Riparian Corridors in Semi-Arid Sonora, Mexico

Description

Land use change driven by human population expansion continues to influence

the integrity and configuration of riparian corridors worldwide. Wildlife viability in semi-arid regions depend heavily on the connectivity of riparian

Land use change driven by human population expansion continues to influence

the integrity and configuration of riparian corridors worldwide. Wildlife viability in semi-arid regions depend heavily on the connectivity of riparian corridors, since water is the primary limiting resource. The Madrean Archipelago in northern Mexico and southwestern United States (US) is a biodiversity hotspot that supports imperiled wildlife like jaguar (Panthera onca) and ocelot (Leopardus pardalis). Recent and ongoing infrastructure developments in the historically understudied US-México borderlands region, such as the border wall and expansion of Federal Highway 2, are altering wildlife movement and disconnecting essential habitat.

I used wildlife cameras to assess species occupancy, abundance, and related habitat variables affecting the use of washes as corridors for mammals in semi-arid Los Ojos (LO), a private ranch within a 530 km2 priority conservation area in Sonora, México located south of the border and Federal Highway 2. From October 2018 to April 2019, I deployed 21 wildlife cameras in five different riparian corridors within LO. I used single- season occupancy models and Royal Nichols abundance models to explore the relationship between habitat variables and use of riparian corridors by mammal communities of conservation concern within this region.

Twenty-one mammal species were recorded in the study area, including American black bear (Ursus americanus), white-tailed deer (Odocoileus virginianus) and the first sighting of jaguar (Panthera onca) in this region in 25 years. For the 11 medium- and large-bodied mammals recorded, habitat variables related to perennial river characteristics (distance to river, weekly water, and site width) and remoteness (distance from highway, elevation, and NDVI) were important for occupancy, but the direction of the relationship varied by species. For commonly observed species such as mountain lion (Puma concolor) and white-nosed coati (Nasua narica), topographic variety was highly informative for species abundance. These results highlight the importance of habitat diversity when identifying corridors for future protection to conserve wildlife communities in semi-arid regions. Additionally, this study provides robust evidence in support of mitigation measures (e.g. funnel fencing, over- or under- passes) along Federal Highway 2, and other barriers such as the border wall, to facilitate wildlife connectivity.

Contributors

Agent

Created

Date Created
  • 2020

155314-Thumbnail Image.png

Microhabitat and movement assessment for northern Mexican gartersnakes (Thamnophis eques megalops) at Bubbling Ponds Hatchery, Arizona

Description

Species conservation requires an understanding of the habitats on which that species depends as well as how it moves within and among those habitats. Knowledge of these spatial and temporal

Species conservation requires an understanding of the habitats on which that species depends as well as how it moves within and among those habitats. Knowledge of these spatial and temporal patterns is vital for effective management and research study design. Bubbling Ponds Hatchery in Cornville, Arizona, supports a robust population of the northern Mexican gartersnake (Thamnophis eques megalops), which was listed as threatened under the Endangered Species Act in 2014. Natural resource managers are interested in understanding the ecology of gartersnakes at this site to guide hatchery operations and to serve as a model for habitat creation and restoration. My objectives were to identify habitat selection and activity patterns of northern Mexican gartersnakes at the hatchery and how frequency of monitoring affects study results. I deployed transmitters on 42 individual gartersnakes and documented macro- and microhabitat selection, daily and seasonal activity patterns, and movement distances. Habitat selection and movements were similar between males and females and varied seasonally. During the active season (March–October), snakes primarily selected wetland edge habitat with abundant cover and were more active and moved longer distances than during other parts of the year. Gestating females selected similar locations but with less dense cover. During the inactive season (November–February), snakes were less mobile and selected upland habitats, including rocky slopes with abundant vegetation. Snakes displayed diurnal patterns of activity. Estimates of daily distance traveled decreased with less-frequent monitoring; a sampling interval of once every 24 hours yielded only 53–62% of known daily distances moved during the active season. These results can help inform management activities and research design. Conservation of this species should incorporate a landscape-level approach that includes abundant wetland edge habitat with connected upland areas. Resource managers and researchers should carefully assess timing and frequency of activities in order to meet project objectives.

Contributors

Agent

Created

Date Created
  • 2017

157978-Thumbnail Image.png

Responses of mammals to native and non-native riparian forest types in Southeastern Arizona

Description

Riparian areas are an important resource, especially in the arid southwest, for many wildlife species. Understanding species occurrence in areas dominated by non-native vegetation is important to determine if management

Riparian areas are an important resource, especially in the arid southwest, for many wildlife species. Understanding species occurrence in areas dominated by non-native vegetation is important to determine if management should be implemented. Saltcedar (Tamarix spp.) is one of the most prevalent non-native trees in riparian areas in the southwest United States and can alter vegetation structure, but little is known about how medium and large carnivores use stands of saltcedar. Three riparian forest types make up the San Pedro riparian corridor: non-native saltcedar, native mesquite (Prosopis spp.) bosque, and a mixture of native cottonwood (Populus fremontii) and willow (Salix goodingii) woodlands. My goals were to determine relative use, diversity, and occupancy of medium and large mammals across forest types to evaluate use of the non-native stands. I sampled mammals along approximately 25.7 river kilometers between July 2017 and October 2018, using 18 trail cameras (six per forest type) spaced 1km apart. I summarized environmental variables around the camera sites to relate them to species occupancy and reduced them to 4 components using a Principal Component Analysis (PCA). I observed 14 carnivore species, including bobcat (Lynx rufus), coyote (Canis latrans), and coati (Nasua narica) over 7,692 trap nights. Occupancy of some species may have been influenced by the different components, but models showed high standard errors, making it difficult to draw firm conclusions. Most mammal species used all three forest types at some level and no surveyed forest type was completely avoided or unused. Coyote tended to have greater use in the mesquite forest while canids trended toward greater use in saltcedar forest. Based on two-species occupancy models as well as activity overlap patterns, subordinate species did not appear to avoid dominant species. No species seems significantly affected by non-native saltcedar at this time.

Contributors

Agent

Created

Date Created
  • 2019

149766-Thumbnail Image.png

Herpetofauna and riparian microhabitat of urban and wildland reaches along the Salt River, Arizona

Description

Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian

Worldwide, riverine floodplains are among the most endangered landscapes. In response to anthropogenic impacts, riverine restoration projects are considerably increasing. However, there is a paucity of information on how riparian rehabilitation activities impact non-avian wildlife communities. I evaluated herpetofauna abundance, species richness, diversity (i.e., Shannon and Simpson indices), species-specific responses, and riparian microhabitat characteristics along three reaches (i.e., wildland, urban rehabilitated, and urban disturbed) of the Salt River, Arizona. The surrounding uplands of the two urbanized reaches were dominated by the built environment (i.e., Phoenix metropolitan area). I predicted that greater diversity of microhabitat and lower urbanization would promote herpetofauna abundance, richness, and diversity. In 2010, at each reach, I performed herpetofauna visual surveys five times along eight transects (n=24) spanning the riparian zone. I quantified twenty one microhabitat characteristics such as ground substrate, vegetative cover, woody debris, tree stem density, and plant species richness along each transect. Herpetofauna species richness was the greatest along the wildland reach, and the lowest along the urban disturbed reach. The wildland reach had the greatest diversity indices, and diversity indices of the two urban reaches were similar. Abundance of herpetofauna was approximately six times lower along the urban disturbed reach compared to the two other reaches, which had similar abundances. Principal Component Analysis (PCA) reduced microhabitat variables to five factors, and significant differences among reaches were detected. Vegetation structure complexity, vegetation species richness, as well as densities of Prosopis (mesquite), Salix (willow), Populus (cottonwood), and animal burrows had a positive correlation with at least one of the three herpetofauna community parameter quantified (i.e., herpetofauna abundance, species richness, and diversity indices), and had a positive correlation with at least one herpetofauna species. Overall, rehabilitation activities positively influenced herpetofauna abundance and species richness, whereas urbanization negatively influenced herpetofauna diversity indices. Based on herpetofauna/microhabitat correlations established, I developed recommendations regarding microhabitat features that should be created in order to promote herpetofauna when rehabilitating degraded riparian systems. Recommendations are to plant vegetation of different growth habit, provide woody debris, plant Populus, Salix, and Prosopis of various ages and sizes, and to promote small mammal abundance.

Contributors

Agent

Created

Date Created
  • 2011