Matching Items (11)
154930-Thumbnail Image.png
Description
Viral protein U (Vpu) is a type-III integral membrane protein encoded by the Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays vital roles in down-regulation of CD4 receptors in T cells and also in the budding of virions. But, there remain key structure/function questions

Viral protein U (Vpu) is a type-III integral membrane protein encoded by the Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays vital roles in down-regulation of CD4 receptors in T cells and also in the budding of virions. But, there remain key structure/function questions regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis and thus, it makes for an attractive target to study the structural attributes of this protein by elucidating a structural model with X-ray crystallography. This study describes a multi-pronged approach of heterologous over-expression of Vpu. The strategies of purification and biophysical/ biochemical characterization of the different versions of the protein to evaluate their potential for crystallization are also detailed. Furthermore, various strategies employed for the crystallization of Vpu by both in surfo and in cubo techniques, and the challenges faced towards the structural studies of this membrane protein by characterization with solution Nuclear magnetic resonance (NMR) spectroscopy are also described.
ContributorsDeb, Arpan (Author) / Leket-Mor, Tsafrir S (Thesis advisor) / Fromme, Petra (Committee member) / Mason, Hugh (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2016
128196-Thumbnail Image.png
Description

About 2.5 × 106 snapshots on microcrystals of photoactive yellow protein (PYP) from a recent serial femtosecond crystallographic (SFX) experiment were reanalyzed to maximum resolution. The resolution is pushed to 1.46 Å, and a PYP structural model is refined at that resolution. The result is compared to other PYP models determined

About 2.5 × 106 snapshots on microcrystals of photoactive yellow protein (PYP) from a recent serial femtosecond crystallographic (SFX) experiment were reanalyzed to maximum resolution. The resolution is pushed to 1.46 Å, and a PYP structural model is refined at that resolution. The result is compared to other PYP models determined at atomic resolution around 1 Å and better at the synchrotron. By comparing subtleties such as individual isotropic temperature factors and hydrogen bond lengths, we were able to assess the quality of the SFX data at that resolution. We also show that the determination of anisotropic temperature factor ellipsoids starts to become feasible with the SFX data at resolutions better than 1.5 Å.

ContributorsSchmidt, Marius (Author) / Pande, Kanupriya (Author) / Basu, Shibom (Author) / Tenboer, Jason (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05-15
128510-Thumbnail Image.png
Description

We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an

We describe the deposition of four datasets consisting of X-ray diffraction images acquired using serial femtosecond crystallography experiments on microcrystals of human G protein-coupled receptors, grown and delivered in lipidic cubic phase, at the Linac Coherent Light Source. The receptors are: the human serotonin receptor 2B in complex with an agonist ergotamine, the human δ-opioid receptor in complex with a bi-functional peptide ligand DIPP-NH2, the human smoothened receptor in complex with an antagonist cyclopamine, and finally the human angiotensin II type 1 receptor in complex with the selective antagonist ZD7155. All four datasets have been deposited, with minimal processing, in an HDF5-based file format, which can be used directly for crystallographic processing with CrystFEL or other software. We have provided processing scripts and supporting files for recent versions of CrystFEL, which can be used to validate the data.

ContributorsWhite, Thomas A. (Author) / Barty, Anton (Author) / Liu, Wei (Author) / Ishchenko, Andrii (Author) / Zhang, Haitao (Author) / Gati, Cornelius (Author) / Zatsepin, Nadia (Author) / Basu, Shibom (Author) / Oberthur, Dominik (Author) / Metz, Markus (Author) / Beyerlein, Kenneth R. (Author) / Yoon, Chun Hong (Author) / Yefanov, Oleksandr M. (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Messerschmidt, Marc (Author) / Koglin, Jason E. (Author) / Boutet, Sebastien (Author) / Weierstall, Uwe (Author) / Cherezov, Vadim (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-08-01
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11
130351-Thumbnail Image.png
Description

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

ContributorsDeb, Arpan (Author) / Johnson, William (Author) / Kline, Alexander (Author) / Scott, Boston (Author) / Meador, Lydia (Author) / Srinivas, Dustin (Author) / Martin Garcia, Jose Manuel (Author) / Dorner, Katerina (Author) / Borges, Chad (Author) / Misra, Rajeev (Author) / Hogue, Brenda (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / School of Molecular Sciences (Contributor) / Applied Structural Discovery (Contributor) / Personalized Diagnostics (Contributor)
Created2017-02-22
130284-Thumbnail Image.png
Description
CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design

CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli. The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to a resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.
ContributorsLee, Ho-Hsien (Author) / Cherni, Irene (Author) / Yu, HongQi (Author) / Fromme, Raimund (Author) / Doran, Jeffrey (Author) / Grotjohann, Ingo (Author) / Mittman, Michele (Author) / Basu, Shibom (Author) / Deb, Arpan (Author) / Dorner, Katerina (Author) / Aquila, Andrew (Author) / Barty, Anton (Author) / Boutet, Sebastien (Author) / Chapman, Henry N. (Author) / Doak, R. Bruce (Author) / Hunter, Mark (Author) / James, Daniel (Author) / Kirian, Richard (Author) / Kupitz, Christopher (Author) / Lawrence, Robert (Author) / Liu, Haiguang (Author) / Nass, Karol (Author) / Schlichting, Ilme (Author) / Schmidt, Kevin (Author) / Seibert, M. Marvin (Author) / Shoeman, Robert L. (Author) / Spence, John (Author) / Stellato, Francesco (Author) / Weierstall, Uwe (Author) / Williams, Garth J. (Author) / Yoon, Chun Hong (Author) / Wang, Dingjie (Author) / Zatsepin, Nadia (Author) / Hogue, Brenda (Author) / Matoba, Nobuyuki (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Department of Chemistry and Biochemistry (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Department of Physics (Contributor)
Created2014-08-20
130302-Thumbnail Image.png
Description
Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic

Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.
ContributorsKupitz, Christopher (Author) / Olmos, Jose L. (Author) / Holl, Mark (Author) / Tremblay, Lee (Author) / Pande, Kanupriya (Author) / Pandey, Suraj (Author) / Oberthur, Dominik (Author) / Hunter, Mark (Author) / Liang, Mengning (Author) / Aquila, Andrew (Author) / Tenboer, Jason (Author) / Calvey, George (Author) / Katz, Andrea (Author) / Chen, Yujie (Author) / Wiedorn, Max O. (Author) / Knoska, Juraj (Author) / Meents, Alke (Author) / Majriani, Valerio (Author) / Norwood, Tyler (Author) / Poudyal, Ishwor (Author) / Grant, Thomas (Author) / Miller, Mitchell D. (Author) / Xu, Weijun (Author) / Tolstikova, Aleksandra (Author) / Morgan, Andrew (Author) / Metz, Markus (Author) / Martin Garcia, Jose Manuel (Author) / Zook, James (Author) / Roy Chowdhury, Shatabdi (Author) / Coe, Jesse (Author) / Nagaratnam, Nirupa (Author) / Meza-Aguilar, Domingo (Author) / Fromme, Raimund (Author) / Basu, Shibom (Author) / Frank, Matthias (Author) / White, Thomas (Author) / Barty, Anton (Author) / Bajt, Sasa (Author) / Yefanov, Oleksandr (Author) / Chapman, Henry N. (Author) / Zatsepin, Nadia (Author) / Nelson, Garrett (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Schwander, Peter (Author) / Pollack, Lois (Author) / Fromme, Petra (Author) / Ourmazd, Abbas (Author) / Phillips, George N. (Author) / Schmidt, Marius (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor)
Created2016-12-15
130306-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals

Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.
ContributorsFromme, Raimund (Author) / Ishchenko, Andrii (Author) / Metz, Markus (Author) / Roy Chowdhury, Shatabdi (Author) / Basu, Shibom (Author) / Boutet, Sebastien (Author) / Fromme, Petra (Author) / White, Thomas A. (Author) / Barty, Anton (Author) / Spence, John (Author) / Weierstall, Uwe (Author) / Liu, Wei (Author) / Cherezov, Vadim (Author) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2015-08-04
130308-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) has opened a new era in crystallo­graphy by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption.

Serial femtosecond crystallography (SFX) has opened a new era in crystallo­graphy by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, the structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.
ContributorsConrad, Chelsie (Author) / Basu, Shibom (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Schaffer, Alexander (Author) / Roy Chowdhury, Shatabdi (Author) / Zatsepin, Nadia (Author) / Aquila, Andrew (Author) / Coe, Jesse (Author) / Gati, Cornelius (Author) / Hunter, Mark S. (Author) / Koglin, Jason E. (Author) / Kupitz, Christopher (Author) / Nelson, Garrett (Author) / Subramanian, Ganesh (Author) / White, Thomas A. (Author) / Zhao, Yun (Author) / Zook, James (Author) / Boutet, Sebastien (Author) / Cherezov, Vadim (Author) / Spence, John (Author) / Fromme, Raimund (Author) / Weierstall, Uwe (Author) / Fromme, Petra (Author) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor)
Created2015-06-30
130313-Thumbnail Image.png
Description
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the

Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.
ContributorsLi, Dianfan (Author) / Stansfeld, Phillip J. (Author) / Sansom, Mark S. P. (Author) / Keogh, Aaron (Author) / Vogeley, Lutz (Author) / Howe, Nicole (Author) / Lyons, Joseph A. (Author) / Aragao, David (Author) / Fromme, Petra (Author) / Fromme, Raimund (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Kupitz, Christopher (Author) / Rendek, Kimberley (Author) / Weierstall, Uwe (Author) / Zatsepin, Nadia (Author) / Cherezov, Vadim (Author) / Liu, Wei (Author) / Bandaru, Sateesh (Author) / English, Niall J. (Author) / Gati, Cornelius (Author) / Barty, Anton (Author) / Yefanov, Oleksandr (Author) / Chapman, Henry N. (Author) / Diederichs, Kay (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Seibert, M. Marvin (Author) / Caffrey, Martin (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-12-17