Matching Items (5)

128014-Thumbnail Image.png

In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens

Description

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and are implicated in the etiology of several neuropsychiatric disorders, including substance use disorders (SUDs). Using in silico genome-wide sequence analyses,

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression and are implicated in the etiology of several neuropsychiatric disorders, including substance use disorders (SUDs). Using in silico genome-wide sequence analyses, we identified miR-495 as a miRNA whose predicted targets are significantly enriched in the Knowledgebase for Addiction Related Genes (ARG) database (KARG; http://karg.cbi.pku.edu.cn). This small non-coding RNA is also highly expressed within the nucleus accumbens (NAc), a pivotal brain region underlying reward and motivation. Using luciferase reporter assays, we found that miR-495 directly targeted the 3′UTRs of Bdnf, Camk2a and Arc. Furthermore, we measured miR-495 expression in response to acute cocaine in mice and found that it is downregulated rapidly and selectively in the NAc, along with concomitant increases in ARG expression. Lentiviral-mediated miR-495 overexpression in the NAc shell (NAcsh) not only reversed these cocaine-induced effects but also downregulated multiple ARG mRNAs in specific SUD-related biological pathways, including those that regulate synaptic plasticity. miR-495 expression was also downregulated in the NAcsh of rats following cocaine self-administration. Most importantly, we found that NAcsh miR-495 overexpression suppressed the motivation to self-administer and seek cocaine across progressive ratio, extinction and reinstatement testing, but had no effect on food reinforcement, suggesting that miR-495 selectively affects addiction-related behaviors. Overall, our in silico search for post-transcriptional regulators identified miR-495 as a novel regulator of multiple ARGs that have a role in modulating motivation for cocaine.

Contributors

Agent

Created

Date Created
  • 2017-01-13

135839-Thumbnail Image.png

Overexpression of MicroRNA-495 and its Effects on Cocaine Addiction

Description

Drug addiction is a pervasive problem in society, as it produces major increases in health care costs, crime, and loss of productivity. With over 3 million long-term users in America

Drug addiction is a pervasive problem in society, as it produces major increases in health care costs, crime, and loss of productivity. With over 3 million long-term users in America alone, cocaine is one of the most identifiable and addictive drugs. Cocaine produces major neurological changes in the central nervous system, including widespread changes in gene expression. MicroRNAs are small, non-coding transcripts that regulate gene expression post-transcriptionally by preventing translation into function protein. Given that one miRNA can target several genes simultaneously, they have the potential to attenuate drug-induced changes in gene expression. We previously found that the microRNA miR-495 regulates several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc), an important brain region involved in reward and motivation. Furthermore, acute cocaine decreases miR-495 expression and increases ARG expression in the NAc. Therefore, the aim of this thesis was to determine the effect of miR-495 overexpression in the NAc on cocaine self-administration behavior. Male Sprague Dawley rats were trained to lever press for cocaine and were then infused with a lentivirus into the NAc that either overexpressed green fluorescent protein (GFP, control) or miR-495+GFP. We then tested the rats on several doses of cocaine on both a fixed ratio (5) and progressive ratio (PR) schedule of reinforcement. We performed a follow-up experiment that included the same viral manipulation and testing, but the reinforcer was switched to food pellets. We found that NAc miR-495 overexpression reduces cocaine self-administration on a PR, but not an FR5, schedule of reinforcement. We found no effects of miR-495 overexpression on food reinforcement. These data suggest that NAc miR-495 regulates genes involved in motivation for cocaine, but not general motivation based on the data with food reinforcement. Future studies will seek to determine the specific target genes responsible for our behavioral effects.

Contributors

Agent

Created

Date Created
  • 2016-05

136985-Thumbnail Image.png

Dosage effects of highly selective D2 antagonist SV293 on drug-seeking behavior and locomotor activity

Description

Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of

Within the field of psychopharmacology, there has been difficultly with studying the functional effects of dopamine at the D2 receptor apart from other dopamine receptors due to the lack of drugs that are selective for the D2 receptor. The purpose of this study was to observe the motivational and locomotor effects of using three varying doses (1.0, 3.0, and 5.6 mg/kg) of a new, highly selective D2 antagonist, SV293. These doses were tested across five different conditions that explore the effects of controls, SV293 by itself, and in combination with cocaine. These tests are designed to separately assess the effects of the antagonist between drug-seeking behaviors and locomotor activity. The cue tests showed that SV293 reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivational effects of cocaine-related cues. SV293 alone also reduced drug-seeking and increased response latency at the high dose, suggesting a decrease in motivation for cocaine. Cocaine in combination with SV293 did not produce any significant effects on drug-seeking behavior, suggesting that SV293 did not alter the motivational effects of cocaine itself. Spontaneous locomotor activity tests with SV293 alone showed no reduction in locomotor activity; however, the addition of cocaine showed a significant decrease in locomotor activity at the high dose of SV293. Overall, the 5.6 mg/kg dose of SV293 decreases drug-seeking behavior elicited by cocaine-related cues and environmental stimuli, as well as cocaine-induced locomotor activity. This selective D2 antagonism could ultimately help elucidate the mechanisms of other dopamine receptors with particular emphasis on their involvement with drug addiction. Key words: cocaine, SV293, D2, antagonists, dopamine

Contributors

Agent

Created

Date Created
  • 2014-05

154368-Thumbnail Image.png

MicroRNA regulation of addiction-related gene expression and motivation for cocaine in rats

Description

MicroRNAs are small, non-coding transcripts that post-transcriptionally regulate expression of multiple genes. Recently microRNAs have been linked to the etiology of neuropsychiatric disorders, including drug addiction. Following genome-wide sequence analyses,

MicroRNAs are small, non-coding transcripts that post-transcriptionally regulate expression of multiple genes. Recently microRNAs have been linked to the etiology of neuropsychiatric disorders, including drug addiction. Following genome-wide sequence analyses, microRNA-495 (miR-495) was found to target several genes within the Knowledgebase of Addiction-Related Genes (KARG) database and to be highly expressed in the nucleus accumbens (NAc), a pivotal brain region involved in reward and motivation. The central hypothesis of this dissertation is that NAc miR-495 regulates drug abuse-related behavior by targeting several addiction-related genes (ARGs). I tested this hypothesis in two ways: 1) by examining the effects of viral-mediated miR-495 overexpression or inhibition in the NAc of rats on cocaine abuse-related behaviors and gene expression, and 2) by examining changes in NAc miR-495 and ARG expression as a result of brief (i.e., 1 day) or prolonged (i.e., 22 days) cocaine self-administration. I found that behavioral measures known to be sensitive to motivation for cocaine were attenuated by NAc miR-495 overexpression, including resistance to extinction of cocaine conditioned place preference (CPP), cocaine self-administration on a high effort progressive ratio schedule of reinforcement, and cocaine-seeking behavior during both extinction and cocaine-primed reinstatement. These effects appeared specific to cocaine, as there was no effect of NAc miR-495 overexpression on a progressive ratio schedule of food reinforcement. In contrast, behavioral measures known to be sensitive to cocaine reward were not altered, including expression of cocaine CPP and cocaine self-administration under a low effort FR5 schedule of reinforcement. Importantly, the effects were accompanied by decreases in NAc ARG expression, consistent with my hypothesis. In further support, I found that NAc miR-495 levels were reduced and ARG levels were increased in rats following prolonged, but not brief, cocaine self-administration experience. Surprisingly, inhibition of NAc miR-495 expression also decreased both cocaine-seeking behavior during extinction and NAc ARG expression, which may reflect compensatory changes or unexplained complexities in miR-495 regulatory effects. Collectively, the findings suggest that NAc miR-495 regulates ARG expression involved in motivation for cocaine. Therefore, using microRNAs as tools to target several ARGs simultaneously may be useful for future development of addiction therapeutics.

Contributors

Agent

Created

Date Created
  • 2016

150589-Thumbnail Image.png

Novel cues reinstate cocaine-seeking behavior and induce Fos Protein as effectively as conditioned cues

Description

The capability of cocaine-associated stimuli in eliciting craving in human addicts, even after extended periods of abstinence, is modeled in animals using cue reinstatement of extinguished cocaine-seeking behavior. This study

The capability of cocaine-associated stimuli in eliciting craving in human addicts, even after extended periods of abstinence, is modeled in animals using cue reinstatement of extinguished cocaine-seeking behavior. This study aimed to examine brain activation in response to cocaine cues in this model apart from activation produced by test novelty using a novel cue control. Rats trained to self-administer cocaine paired with either an oscillating light or tone cue underwent daily extinction training and were then tested for reinstatement of extinguished cocaine-seeking behavior elicited by response-contingent presentations of either their assigned cocaine-paired cue or the alternate, novel cue. Additional controls received saline infusions and cue presentations yoked to a cocaine-trained rat. Brains were harvested for Fos immunohistochemistry immediately after the 90-min reinstatement test. Surprisingly, conditioned and novel cues both reinstated responding to a similar degree; however magnitude of reinstatement did vary by cue modality with the greatest reinstatement to the light cues. In most brain regions, Fos expression was enhanced in rats with a history of cocaine training regardless of cue type with the exception of the Cg1 region of the anterior cingulate cortex, which was sensitive to test cue modality. Also Fos expression within the dorsomedial caudate-putamen was correlated with responding in the novel, but not conditioned, cue groups. In subsequent experiments, we observed a similar pattern of reinstatement in rats trained and tested for sucrose-seeking behavior, whereas rats trained and tested with the cues only reinstated to a novel light and tone, but not a familiar cue. The results suggest that novel cues reinstate responding to a similar extent as conditioned cues regardless of whether animals have a history of operant-delivered drug or a natural reinforcer. Furthermore, similar brain circuits as those involved in cocaine-seeking behavior are activated by novel cues, suggesting converging processes exist to drive conditioned and novel reinforcement seeking.

Contributors

Agent

Created

Date Created
  • 2012