Matching Items (6)

Future Electricity Supply Vulnerability and Climate Change: A Case Study of Maricopa and Los Angeles Counties

Description

Climatic changes have the potential to impact electricity generation in the U.S. Southwest and methods are needed for estimating how cities will be impacted. This study builds an electricity vulnerability

Climatic changes have the potential to impact electricity generation in the U.S. Southwest and methods are needed for estimating how cities will be impacted. This study builds an electricity vulnerability risk index for two Southwest cities (Phoenix and Los Angeles) based on climate-related changes in electricity generation capacity. Planning reserve margins (PRM) are used to estimate the potential for blackouts and brownouts under future climate scenarios. Reductions in PRM occur in both cities in 2016 with the most significant reductions occurring in regions relying more heavily on hydropower.

Contributors

Methodology for Estimating Electricity Generation Vulnerability to Climate Change Using a Physically-based Modelling System

Description

In recent years, concerns have grown over the risks posed by climate change on the U.S. electricity grid. The availability of water resources is integral to the production of electric

In recent years, concerns have grown over the risks posed by climate change on the U.S. electricity grid. The availability of water resources is integral to the production of electric power, and droughts are expected to become more frequent, severe, and longer-lasting over the course of the twenty-first century. The American Southwest, in particular, is expected to experience large deficits in streamflow. Studies on the Colorado River anticipate streamflow declines of 20-45% by 2050. Other climactic shifts—such as higher water and air temperatures—may also adversely affect power generation. As extreme weather becomes more common, better methods are needed to assess the impact of climate change on power generation. This study uses a physically-based modeling system to assess the vulnerability of power infrastructure in the Southwestern United States at a policy-relevant scale.

Thermoelectric power—which satisfies a majority of U.S. electricity demand—is vulnerable to drought. Thermoelectric power represents the backbone of the U.S. power sector, accounting for roughly 91% of generation. Thermoelectric power also accounts for roughly 39% of all water withdrawals in the U.S.—roughly equivalent to the amount of water used for agriculture. Water use in power plants is primarily dictated by the needs of the cooling system. During the power generation process, thermoelectric power plants build up waste heat, which must be discharged in order for the generation process to continue. Traditionally, water is used for this purpose, because it is safe, plentiful, and can absorb a large amount of heat. However, when water availability is constrained, power generation may also be adversely affected. Thermoelectric power plants are particularly susceptible to changes in streamflow and water temperature. These vulnerabilities are exacerbated by environmental regulations, which govern both the amount of water withdrawn, and the temperatures of the water discharged. In 2003, extreme drought and heat impaired the generating capacity of more than 30 European nuclear power plants, which were unable to comply with environmental regulations governing discharge temperatures. Similarly, many large base-load thermoelectric facilities in the Southeastern United States were threatened by a prolonged drought in 2007 and 2008. During this period, the Tennessee Valley Authority (TVA) reduced generation at several facilities, and one major facility was shut down entirely. To meet demand, the TVA was forced to purchase electricity from the grid, causing electricity prices to rise.

Although thermoelectric power plants currently produce most of the electric power consumed in the United States, other sources of power are also vulnerable to changes in climate. Renewables are largely dependent on natural resources like rain, wind, and sunlight. As the quantity and distribution of these resources begins to change, renewable generation is also likely to be affected. Hydroelectric dams represent the largest source of renewable energy currently in use throughout the United States. Under drought conditions, when streamflow attenuates and reservoir levels drop, hydroelectric plants are unable to operate at normal capacity. In 2001, severe drought in California and the Pacific Northwest restricted hydroelectric power generation, causing a steep increase in electricity prices. Although blackouts and brownouts were largely avoided, the Northwest Power and Conservation Council estimated a regional economic impact of roughly $2.5 to $6 billion. In addition to hydroelectric power, it has also been theorized that solar energy resources may also be susceptible to predicted increases in surface temperature and atmospheric albedo. One study predicts that solar facilities in the Southwestern U.S. may suffer losses of 2-5%.

The aim of this study is to estimate the extent to which climate change may impact power generation in the Southwestern United States. This analysis will focus on the Western Interconnection, which comprises the states of Washington, Oregon, California, Idaho, Nevada, Utah, Arizona, Colorado, Wyoming, Montana, South Dakota, New Mexico and Texas. First, climactic and hydrologic parameters relevant to power generation are identified for five types of generation technologies. A series of functional relationships are developed such that impacts to power generation can be estimated directly from changes in certain meteorological and hydrological parameters. Next, climate forcings from the CMIP3 multi-model ensemble are used as inputs to a physically-based modeling system (consisting of a hydrological model, an offline routing model, and a one-dimensional stream temperature model). The modeling system is used to estimate changes in climactic and hydrologic parameters relevant to electricity generation for various generation technologies. Climactic and hydrologic parameters are then combined with the functional relationships developed in the first step to estimate impacts to power generation over the twenty-first century.

Contributors

Assessing Future Extreme Heat Events at Intra-Urban Scales: A Comparative Study of Phoenix and Los Angeles

Description

Already the leading cause of weather-related deaths in the United States, extreme heat events (EHEs) are expected to occur with greater frequency, duration and intensity over the next century. However,

Already the leading cause of weather-related deaths in the United States, extreme heat events (EHEs) are expected to occur with greater frequency, duration and intensity over the next century. However, not all populations are affected equally. Risk factors for heat mortality—including age, race, income level, and infrastructure characteristics—often vary by geospatial location. While traditional epidemiological studies sometimes account for social risk factors, they rarely account for intra-urban variability in meteorological characteristics, or for the interaction between social and meteorological risks.

This study aims to develop estimates of EHEs at an intra-urban scale for two major metropolitan areas in the Southwest: Maricopa County (Arizona) and Los Angeles County (California). EHEs are identified at a 1/8-degree (12 km) spatial resolution using an algorithm that detects prolonged periods of abnormally high temperatures. Downscaled temperature projections from three general circulation models (GCMs) are analyzed under three relative concentration pathway (RCP) scenarios. Over the next century, EHEs are found to increase by 340-1800% in Maricopa County, and by 150-840% in Los Angeles County. Frequency of future EHEs is primarily driven by greenhouse gas concentrations, with the greatest number of EHEs occurring under the RCP 8.5 scenario. Intra-urban variation in EHEs is also found to be significant. Within Maricopa County, “high risk” regions exhibit 4.5 times the number of EHE days compared to “low risk” regions; within Los Angeles County, this ratio is 15 to 1.

The project website can be accessed here

Contributors

Created

Date Created
  • 2014-06-12

104-Thumbnail Image.png

Frameworks for Assessing the Vulnerability of U.S. Rail Systems to Extreme Heat and Flooding

Description

Recent climatic trends show more flooding and extreme heat events and in the future transportation infrastructure may be susceptible to more frequent and intense environmental perturbations. Our transportation systems have

Recent climatic trends show more flooding and extreme heat events and in the future transportation infrastructure may be susceptible to more frequent and intense environmental perturbations. Our transportation systems have largely been designed to withstand historical weather events, for example, floods that occur at an intensity that is experienced once every 100 years, and there is evidence that these events are expected become more frequent. There are increasing efforts to better understand the impacts of climate change on transportation infrastructure. An abundance of new research is emerging to study various aspects of climate change on transportation systems. Much of this research is focused on roadway networks and reliable automobile travel. We explore how flooding and extreme heat might impact passenger rail systems in the Northeast and Southwest U.S.

Contributors

129198-Thumbnail Image.png

Impacts of Climate Change on Electric Power Supply in the Western United States

Description

Climate change may constrain future electricity generation capacity by increasing the incidence of extreme heat and drought events. We estimate reductions to generating capacity in the Western United States based

Climate change may constrain future electricity generation capacity by increasing the incidence of extreme heat and drought events. We estimate reductions to generating capacity in the Western United States based on long-term changes in streamflow, air temperature, water temperature, humidity and air density. We simulate these key parameters over the next half-century by joining downscaled climate forcings with a hydrologic modelling system. For vulnerable power stations (46% of existing capacity), climate change may reduce average summertime generating capacity by 1.1–3.0%, with reductions of up to 7.2–8.8% under a ten-year drought. At present, power providers do not account for climate impacts in their development plans, meaning that they could be overestimating their ability to meet future electricity needs.

Contributors

Created

Date Created
  • 2015-08-01

Methodology for Estimating Generating Capacity Losses in Thermoelectric Power Facilities with Recirculating Cooling Systems Under Climate Change

Description

This report updates Supplementary Information section 2.1.2.2 (Recirculating Cooling) of Bartos and Chester (2015). Extraneous derivations have been removed and an error corrected.

Impacts of Climate Change on

This report updates Supplementary Information section 2.1.2.2 (Recirculating Cooling) of Bartos and Chester (2015). Extraneous derivations have been removed and an error corrected.

Impacts of Climate Change on Electric Power Supply in the Western U.S., Matthew Bartos and Mikhail Chester, Nature Climate Change, 2015, 4(8), pp. 748-752, DOI: 10.1038
climate2648. 

Contributors