Matching Items (21)
151925-Thumbnail Image.png
Description
This research addresses human adaptive decisions made at the Pleistocene-Holocene transition - the transition from the Last Glacial Maximum (LGM) to the climate regime in which humankind now lives - in the Mediterranean region of southeast Spain. Although on a geological time scale the Pleistocene-Holocene transition is the latest in

This research addresses human adaptive decisions made at the Pleistocene-Holocene transition - the transition from the Last Glacial Maximum (LGM) to the climate regime in which humankind now lives - in the Mediterranean region of southeast Spain. Although on a geological time scale the Pleistocene-Holocene transition is the latest in a series of widespread environmental transformations due to glacial-interglacial cycles, it is the only one for which we have a record of the response by modern humans. Mediterranean Spain lay outside the refugium areas of late Pleistocene Europe, in which advancing ice sheets limited the land available for subsistence and caused relative demographic packing of hunter-gatherers. Therefore, the archaeological records of Mediterranean Spain contain more generally applicable states of the Pleistocene-Holocene transition, making it a natural laboratory for research on human adaptation to an environmental transformation. Foragers in Mediterranean Spain appear to have primarily adapted to macroclimatic change by extending their social networks to access new subsistence resources and by changing the mix of traditional relationships. Comparing faunal records from two cave sites near the Mediterranean coast with Geographic Information System (GIS) reconstructions of the coastal littoral plain from the LGM to the Holocene indicates the loss of the large ungulate species (mainly Bos primigenius and Equus) at one site coincided with the associated littoral disappearing due to sea level rise in the late Upper Paleolithic. Farther north, where portions of the associated littoral remained due to a larger initial mass and a more favorable topography, the species represented in the faunal record were constant through time. Social boundary defense definitions of territory require arranging social relationships in order to access even this lightly populated new hunting area on the interior plain. That the values of the least-cost-paths fit the parameters of two models equating varying degrees of social alliance with direct travel distances also helps support the hypothesis that foragers in Mediterranean Spain adapted to the consequences of macroclimatic change by extending their social networks to gain access to new subsistence resources Keeping these relationships stable and reliable was a mitigating factor in the mobility patterns of foragers during this period from direct travel to more distant down-the-line exchange. Information about changing conditions and new circumstances flowed along these same networks of social relationships. The consequences of climate-induced environmental changes are already a concern in the world, and human decisions in regard to future conditions are built upon past precedents. As the response to environmental risk centers on increasing the resilience of vulnerable smallholders, archaeology has an opportunity to apply its long-term perspective in the search for answers
ContributorsSchmich, Steven A (Author) / Clark, Geoffrey A. (Thesis advisor) / Barton, Michael (Thesis advisor) / Bearat, Hamdallah (Committee member) / Jochim, Michael A. (Committee member) / Arizona State University (Publisher)
Created2013
151483-Thumbnail Image.png
Description
The ability of Neandertals to cope with the oscillating climate of the late Pleistocene and the extent to which these climate changes affected local Neandertal habitats remain unanswered anthropological topics of considerable scientific interest. Understanding the impact of climatic instability on Neandertals is critical for reconstructing the behaviors of our

The ability of Neandertals to cope with the oscillating climate of the late Pleistocene and the extent to which these climate changes affected local Neandertal habitats remain unanswered anthropological topics of considerable scientific interest. Understanding the impact of climatic instability on Neandertals is critical for reconstructing the behaviors of our closest fossil relatives and possibly identifying factors that contributed to their extinction. My work aimed to test the hypotheses that 1) cold climates stressed Neandertal populations, and 2) that global climate changes affected local Neandertal habitats. An analysis of Neandertal butchering on Cervus elaphus, Rangifer tarandus, and Capreolus capreolus skeletal material deposited during global warm and cold phases from two French sites - Pech de l'Azé IV and Roc de Marsal - was conducted to assess the impact of climate change on butchering strategies and resource extraction. Results from a statistical analysis of surface modification on all marrow yielding long bones, including the 1st phalanx, demonstrated that specimens excavated from the cold levels at each cave have more cut marks (Wald χ2= 51.33, p= <0.001) and percussion marks (Wald χ2= 4.92, p= 0.02) than specimens from the warm levels after controlling for fragment size. These results support the hypothesis that Neandertals were nutritionally stressed during glacial cycles. The hypothesis that global climates affected local habitats was tested through radiogenic strontium isotopic reconstruction of large herbivore mobility patterns (e.g., Bison, Equus, Cervus and Rangifer), because it is known that in the northern hemisphere, mammals migrate less in warm, well-vegetated environments, but more in cold, open environments. Identifying isotopic variation in mammalian fossils enables mobility patterns to be inferred, providing an indication of whether environments at Pech de l'Azé IV and Roc de Marsal tracked global climates. Results from this study indicate that Neandertal prey species within the Dordogne Valley of France did not undertake long distance round-trip migrations in glacial or interglacial cycles, maintaining the possibility that local habitats did not change in differing climatic cycles. However, because Neandertals were nutritionally stressed the most likely conclusion is that glacial cycles decreased herbivore populations, thus stressing Neandertals.
ContributorsHodgkins, Jamie Melichar (Author) / Marean, Curtis W (Thesis advisor) / Reed, Kaye E (Thesis advisor) / Knudson, Kelly J. (Committee member) / Spencer, Lillian M (Committee member) / Arizona State University (Publisher)
Created2012
151087-Thumbnail Image.png
Description
In recent years, southern Africa has figured prominently in the modern human origins debate due to increasing evidence for precocious behaviors considered to be unique to our species. These significant findings have included bone tools, shell beads, engraved ostrich eggshell, and heavily ground and engraved ochre fragments. The presence of

In recent years, southern Africa has figured prominently in the modern human origins debate due to increasing evidence for precocious behaviors considered to be unique to our species. These significant findings have included bone tools, shell beads, engraved ostrich eggshell, and heavily ground and engraved ochre fragments. The presence of ochre in Middle Stone Age (MSA, ~250-40kya) archaeological sites in southern Africa is often proposed as indirect evidence for the emergence of symbolic or artistic behavior, a uniquely modern human trait. However, there is no remaining artwork from this period and there is significant debate about what the ochre may have been used for. With a few exceptions, ochre has gone largely unstudied. This project tested competing models for ochre use within the Pinnacle Point (PP), South Africa research area. Combined results from characterization and sourcing analyses, color classification, heat treatment analysis, and hafting experiments suggest MSA ochre is tied to early symbolic or ritual behavior.
ContributorsBernatchez, Jocelyn A (Author) / Marean, Curtis W (Thesis advisor) / Bearat, Hamdallah (Committee member) / Abbott, David (Committee member) / Arizona State University (Publisher)
Created2012
157490-Thumbnail Image.png
Description
Two of the defining behaviors associated with the hominin lineage are an increased reliance on tool use and the routine incorporation of animal tissue in the diet. These adaptations have been linked to numerous downstream consequences including key physiological adaptations as well as social and cognitive effects associated with modern

Two of the defining behaviors associated with the hominin lineage are an increased reliance on tool use and the routine incorporation of animal tissue in the diet. These adaptations have been linked to numerous downstream consequences including key physiological adaptations as well as social and cognitive effects associated with modern humans. Thus, a critical issue in human evolution is how to determine when hominins began incorporating significant amounts of meat into their diets. Bone surface modifications (BSM) have long been recognized as a powerful inferential tool in identifying the differential involvement of actors responsible for altering assemblages of bone recovered from both archaeological and paleontological contexts and remain a primary source of direct evidence for butchery activities. Thus, determining the spatiotemporal context of increased carnivory in the hominin lineage relies on the accurate identification of fossil BSM.

Multidecade-long debates over the agents responsible for individual BSM indicate systemic flaws in historical approaches to identification. These debates are in part due to the extreme morphological overlap between BSM produced by certain agents of modification. The primary goal of this dissertation project therefore, is to construct probability models of BSM capable of identifying individual marks with an associated probability of assignment. Using a multivariate Bayesian approach to analyze experimentally-generated BSM data, this dissertation uses two different models, one incorporating both two and three-dimensional (3D) metric and attribute data associated with individual BSM and a second model comparing 3D geometric morphometric (GM) shape data associated with BSM.

The 2D/3D attribute model of BSM is used evaluate an assemblage of fossil BSM recovered from the Ledi-Geraru research area, Ethiopia (2.82 Ma) in spatiotemporal association with early Homo. The results of the analysis reveal compelling evidence for early butchery activities, suggesting hominins may have been using both modified and unmodified stone implements to process carcasses.

The second model, based upon 3D GM data, was used to evaluate the earliest purported evidence for stone-mediated butchery at Dikika, Ethiopia (3.39 Ma). The Dikika marks have been argued to be the result of crocodile feeding, trampling, and butchery by three different research groups. The 3D GM model evaluates the likelihood of each of these actors in the production of the controversial Dikika marks.
ContributorsHarris, Jacob A (Author) / Marean, Curtis W (Thesis advisor) / Hill, Kim (Committee member) / Boyd, Robert (Committee member) / Thompson, Jessica (Committee member) / Campisano, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
156442-Thumbnail Image.png
Description
This dissertation research describes the hunting behavior of early modern humans through the analysis of vertebrate faunal remains from Contrebandiers Cave, Morocco. Contrebandiers Cave is located in the town of Témara and is roughly 250 meters from the current shoreline of the Atlantic Ocean. The cave was excavated in the

This dissertation research describes the hunting behavior of early modern humans through the analysis of vertebrate faunal remains from Contrebandiers Cave, Morocco. Contrebandiers Cave is located in the town of Témara and is roughly 250 meters from the current shoreline of the Atlantic Ocean. The cave was excavated in the 1950s and 1970s by l’Abbé Roche, and again starting in 2007 by Dibble and El Hajraoui with total station plotting of finds. Contrebandiers Cave contains Middle Stone Age (MSA) deposits dated to Marine Isotope Stages (MIS) 5e, 5d and 5c, ~120,000 to ~96,000 years ago. The Later Stone Age (LSA) deposits are dated to MIS 2, ~20,000 years ago. The entirety of the ~12,000 vertebrate faunal remains from Dibble and El Hajraoui’s excavation were analyzed for taxonomic and taphonomic identification.

A total of 67 vertebrate taxa were identified and include ungulates, carnivores, lagomorphs, birds, tortoises, snakes and fish. The faunal remains from Contrebandiers Cave preserve surface modification that indicates both humans and carnivores acted as agents of prey accumulation. Skeletal element representation and surface modification of ungulate remains suggest that humans had primary access to small, medium and large-bodied prey. In the MSA levels, carnivore skeletal remains preserve surface modification that is interpreted as being indicative of behavior associated with skinning for fur removal.

The vertebrate faunal remains from MIS 5e and 5d indicate that humans were hunting grazers and mixed feeders from open habitats and suids from mixed habitats. The faunal remains from MIS 5c indicate that humans focused less on suids and more on mixed feeders from open habitats. The vertebrate faunal remains from MIS 2 reveal humans hunting grazers from dry, open habitats. This research provides a description of human hunting behavior in North Africa, and contributes to our understanding of early modern human behavior prior to dispersal out of Africa.
ContributorsHallett, Emily Yuko (Author) / Marean, Curtis W (Thesis advisor) / Reed, Kaye E (Committee member) / Dibble, Harold L. (Committee member) / Arizona State University (Publisher)
Created2018
156876-Thumbnail Image.png
Description
Climate and environmental forcing are widely accepted to be important drivers of evolutionary and ecological change in mammal communities over geologic time scales. This paradigm has been particularly influential in studies of the eastern African late Cenozoic fossil record, in which aridification, increasing seasonality, and C4 grassland expansion are seen

Climate and environmental forcing are widely accepted to be important drivers of evolutionary and ecological change in mammal communities over geologic time scales. This paradigm has been particularly influential in studies of the eastern African late Cenozoic fossil record, in which aridification, increasing seasonality, and C4 grassland expansion are seen as having shaped the major patterns of human and faunal evolution. Despite the ubiquity of studies linking climate and environmental forcing to evolutionary and ecological shifts in the mammalian fossil record, many central components of this paradigm remain untested or poorly developed. To fill this gap, this dissertation employs biogeographical and macroecological analyses of present-day African mammal communities as a lens for understanding how abiotic change may have shaped community turnover and structure in the eastern African Plio-Pleistocene. Three dissertation papers address: 1) the role of ecological niche breadth in shaping divergent patterns of macroevolutionary turnover across clades; 2) the effect of climatic and environmental gradients on community assembly; 3) the relative influence of paleo- versus present-day climates in structuring contemporary patterns of community diversity. Results of these papers call into question many tenets of current theory, particularly: 1) that niche breadth differences (and, by extension, their influence on allopatric speciation) are important drivers of macroevolution, 2) that climate is more important than biotic interactions in community assembly, and 3) that communities today are in equilibrium with present-day climates. These findings highlight the need to critically reevaluate the role and scale-dependence of climate in mammal evolution and community ecology and to carefully consider potential time lags and disequilibrium dynamics in the fossil record.
ContributorsRowan, John (Author) / Reed, Kaye E (Thesis advisor) / Campisano, Christopher J (Committee member) / Franklin, Janet (Committee member) / Marean, Curtis W (Committee member) / Arizona State University (Publisher)
Created2018
157082-Thumbnail Image.png
Description
The recent emergence of global ‘megafires’ has made it imperative to better understand the role of humans in altering the size, distribution, and seasonality of fires. The dynamic relationship between humans and fire is not a recent phenomenon; rather, fire has deep roots in our biological and cultural evolution. Because

The recent emergence of global ‘megafires’ has made it imperative to better understand the role of humans in altering the size, distribution, and seasonality of fires. The dynamic relationship between humans and fire is not a recent phenomenon; rather, fire has deep roots in our biological and cultural evolution. Because of its long-term perspective, archaeology is uniquely positioned to investigate the social and ecological drivers behind anthropogenic fire. However, the field faces challenges in creating solution-oriented research for managing fire in the future. In this dissertation, I originate new methods and approaches to archaeological data that enable us to interpret humans’ long-term influences on fire regimes. I weave together human niche construction theory and ecological resilience, creating connections between archaeology, paleoecology, and fire ecology. Three, stand-alone studies illustrate the usefulness of these methods and theories for charting changes in land-use, fire-regimes, and vegetation communities during the Neolithic Transition (7600 - 3800 cal. BP) in eastern Spain. In the first study (Ch. II), I analyze archaeological survey data using Bayesian methods to extract land-use intensities from mixed surface assemblages from a case study in the Canal de Navarrés. The second study (Ch. III) builds on the archaeological data collected computational model of landscape fire, charcoal dispersion, and deposition to test how multiple models of natural and anthropogenic fire activity contributed to the formation a single sedimentary charcoal dataset from the Canal de Navarrés. Finally, the third study (Ch. IV) incorporates the modeling and data generated in the previous chapters into sampling and analysis of sedimentary charcoal data from alluvial contexts in three study areas throughout eastern Spain. Results indicate that anthropogenic fire played a significant role in the creation of agricultural landscapes during the Neolithic period, but sustained, low-intensity burning after the late Neolithic period maintained the human created niche for millennia beyond the arrival of agro-pastoral land-use. With global fire activity on the rise, it is vital to incorporate perspectives on the origins, development, and maintenance of human-fire relationships to effectively manage fire in today’s coupled social-ecological landscapes.
ContributorsSnitker, Grant (Author) / Barton, Michael (Thesis advisor) / Morehart, Christopher (Committee member) / Franklin, Janet (Committee member) / Arizona State University (Publisher)
Created2019
154295-Thumbnail Image.png
Description
This study explores how early modern humans used stone tool technology to adapt to changing climates and coastlines in the Middle Stone Age of South Africa. The MSA is associated with the earliest fossil evidence for modern humans and complex cultural behaviors during a time period of dramatic climate change.

This study explores how early modern humans used stone tool technology to adapt to changing climates and coastlines in the Middle Stone Age of South Africa. The MSA is associated with the earliest fossil evidence for modern humans and complex cultural behaviors during a time period of dramatic climate change. Human culture allows for the creation, use, and transmission of technological knowledge that can evolve with changing environmental conditions. Understanding the interactions between technology and the environment is essential to illuminating the role of culture during the origin of our species. This study is focused on understanding ancient tool use from the study of lithic edge damage patterns at archaeological assemblages in southern Africa by using image-based quantitative methods for analyzing stone tools. An extensive experimental program using replicated stone tools provides the comparative linkages between the archaeological artifacts and the tasks for which they were used. MSA foragers structured their tool use and discard behaviors on the landscape in several ways – by using and discarding hunting tools more frequently in the field rather than in caves/rockshelters, but similarly in coastal and interior contexts. This study provides evidence that during a significant microlithic technological shift seen in southern Africa at ~75,000 years ago, new technologies were developed alongside rather than replacing existing technologies. These results are compared with aspects of the European archaeological record at this time to identify features of early human technological behavior that may be unique to the evolutionary history of our species.
ContributorsSchoville, Benjamin J (Author) / Marean, Curtis W (Thesis advisor) / Barton, Michael (Committee member) / Hill, Kim (Committee member) / Arizona State University (Publisher)
Created2016
154193-Thumbnail Image.png
Description
The Middle Stone Age archaeological record from the south coast of South Africa contains significant evidence for early modern human behavior. The south coast is within the modern Greater Cape Floristic Region (GCFR), which in the present-day encompasses the entirety of South Africa’s Winter Rainfall Zone (WRZ) and contains unique

The Middle Stone Age archaeological record from the south coast of South Africa contains significant evidence for early modern human behavior. The south coast is within the modern Greater Cape Floristic Region (GCFR), which in the present-day encompasses the entirety of South Africa’s Winter Rainfall Zone (WRZ) and contains unique vegetation elements that have been hypothesized to be of high utility to hunter-gatherer populations. Extant paleoenvironmental proxy records for the Pleistocene in the region often indicate evidence for more open environments during the past than occur in the area in the present-day, while climate models suggest glacial presence of the WRZ that would support maintenance of C3-predominant GCFR vegetation.

These paleoenvironmental proxies sample past environments at geographic scales that are often regional. The GCFR flora is hyper-diverse, and glacial climate change-driven impacts on local vegetation could have been highly variable over relatively small geographic scales. Proxy records that are circumscribed in their geographic scale are thus key to our understanding of ancient environments at particular MSA archaeological localities.

Micromammal fossil teeth are now recognized as an abundant potential reservoir of paleoenvironmental proxy data at an extremely local scale. This study analyzed modern micromammal teeth obtained from raptor pellets at three locations on the south coast. Stable carbon isotope analysis indicates that the modern micromammals from the taxa sampled consume a wide range of δ13Cplant on the landscape when it is available, and thus stable carbon isotope analysis of micromammal teeth should act as a proxy for the range of available δ13Cdiet in a circumscribed area of vegetation.

Micromammal stable carbon isotope data obtained from specimens from one of the few well-dated MIS6-MIS5 sequences in the region (Pinnacle Point sites 13B, 30, and 9C). δ13Cenamel values for the taxa sampled indicate diets that are primarily C3, and there is almost no evidence for a dietary C4 grass component in any of the sampled specimens. This indicates that, at a minimum, pockets of C3 vegetation associated with the GCFR were likely available to hunter-gatherers at Pinnacle Point throughout the Middle and Late Pleistocene.
ContributorsWilliams, Hope Marie (Author) / Marean, Curtis W (Thesis advisor) / Knudson, Kelly J. (Thesis advisor) / Reed, Kaye (Committee member) / Arizona State University (Publisher)
Created2015
154568-Thumbnail Image.png
Description
Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development

Early weaning, slow somatic and dental growth, and late age at reproduction are all part of a suite of energetic trade-offs that have shaped human evolution. A similar suite of energetic trade-offs has shaped the evolution of the indriid-palaeopropithecid clade, though members of this clade exhibit extremely fast dental development and nearly vestigial deciduous teeth. The development and functional occlusion of the primary postcanine dentition (i.e., deciduous premolars and molars) coincides with several life history parameters in great apes and indriids. This dissertation explored great ape dental macrowear, molar development in indriids, and molar size in lemurs with a broader goal of improving reconstructions of life history profiles in extinct primates. To this aim, macrowear and dental development were analyzed in apes and lemurs, respectively. Occlusal casts (six great ape species; N=278) were scanned to track mandibular fourth deciduous premolar (dp4) macrowear. Utilizing dental topographic analyses, changes in occlusal gradient and terrain were quantified. A subset of the great ape data (four species; n=199) was analyzed to test if differences in dp4 wear correlate with age at weaning. Using dental histology, molar development was reconstructed for Indri indri (n=1) and Avahi laniger (n=1). Life history and molar size data were collected from the literature. The results of this dissertation demonstrate that most great apes exhibited evidence of topographic maintenance, suggesting dp4s wear in a manner that maintain functional efficiency during growth and development; however, the manner in which maintenance is achieved (e.g., preservation of relief or complexity) is species specific. Dp4 macrowear is not correlated with age at weaning in great apes and is probably unreliable to reconstruct age at weaning in hominins. The pace of molar development in members of the indriid- palaeopropithecid clade did not correlate with body or brain size, an association present in several other primates. Associations of molar size with age at weaning suggest that expanding other developmental models (e.g., the inhibitory cascade) to life history is worth consideration. The broad variation in macrowear, dental development, and size highlights how the primary dentition may correlate with different life history parameters depending on the species and ecological setting, an important consideration when using teeth to reconstruct life history profiles.
ContributorsCatlett, Kierstin Kay (Author) / Schwartz, Gary (Thesis advisor) / Barton, Michael (Committee member) / Godfrey, Laurie (Committee member) / Reed, Kaye (Committee member) / Arizona State University (Publisher)
Created2016