Matching Items (3,348)
Filtering by

Clear all filters

151925-Thumbnail Image.png
Description
This research addresses human adaptive decisions made at the Pleistocene-Holocene transition - the transition from the Last Glacial Maximum (LGM) to the climate regime in which humankind now lives - in the Mediterranean region of southeast Spain. Although on a geological time scale the Pleistocene-Holocene transition is the latest in

This research addresses human adaptive decisions made at the Pleistocene-Holocene transition - the transition from the Last Glacial Maximum (LGM) to the climate regime in which humankind now lives - in the Mediterranean region of southeast Spain. Although on a geological time scale the Pleistocene-Holocene transition is the latest in a series of widespread environmental transformations due to glacial-interglacial cycles, it is the only one for which we have a record of the response by modern humans. Mediterranean Spain lay outside the refugium areas of late Pleistocene Europe, in which advancing ice sheets limited the land available for subsistence and caused relative demographic packing of hunter-gatherers. Therefore, the archaeological records of Mediterranean Spain contain more generally applicable states of the Pleistocene-Holocene transition, making it a natural laboratory for research on human adaptation to an environmental transformation. Foragers in Mediterranean Spain appear to have primarily adapted to macroclimatic change by extending their social networks to access new subsistence resources and by changing the mix of traditional relationships. Comparing faunal records from two cave sites near the Mediterranean coast with Geographic Information System (GIS) reconstructions of the coastal littoral plain from the LGM to the Holocene indicates the loss of the large ungulate species (mainly Bos primigenius and Equus) at one site coincided with the associated littoral disappearing due to sea level rise in the late Upper Paleolithic. Farther north, where portions of the associated littoral remained due to a larger initial mass and a more favorable topography, the species represented in the faunal record were constant through time. Social boundary defense definitions of territory require arranging social relationships in order to access even this lightly populated new hunting area on the interior plain. That the values of the least-cost-paths fit the parameters of two models equating varying degrees of social alliance with direct travel distances also helps support the hypothesis that foragers in Mediterranean Spain adapted to the consequences of macroclimatic change by extending their social networks to gain access to new subsistence resources Keeping these relationships stable and reliable was a mitigating factor in the mobility patterns of foragers during this period from direct travel to more distant down-the-line exchange. Information about changing conditions and new circumstances flowed along these same networks of social relationships. The consequences of climate-induced environmental changes are already a concern in the world, and human decisions in regard to future conditions are built upon past precedents. As the response to environmental risk centers on increasing the resilience of vulnerable smallholders, archaeology has an opportunity to apply its long-term perspective in the search for answers
ContributorsSchmich, Steven A (Author) / Clark, Geoffrey A. (Thesis advisor) / Barton, Michael (Thesis advisor) / Bearat, Hamdallah (Committee member) / Jochim, Michael A. (Committee member) / Arizona State University (Publisher)
Created2013
157082-Thumbnail Image.png
Description
The recent emergence of global ‘megafires’ has made it imperative to better understand the role of humans in altering the size, distribution, and seasonality of fires. The dynamic relationship between humans and fire is not a recent phenomenon; rather, fire has deep roots in our biological and cultural evolution. Because

The recent emergence of global ‘megafires’ has made it imperative to better understand the role of humans in altering the size, distribution, and seasonality of fires. The dynamic relationship between humans and fire is not a recent phenomenon; rather, fire has deep roots in our biological and cultural evolution. Because of its long-term perspective, archaeology is uniquely positioned to investigate the social and ecological drivers behind anthropogenic fire. However, the field faces challenges in creating solution-oriented research for managing fire in the future. In this dissertation, I originate new methods and approaches to archaeological data that enable us to interpret humans’ long-term influences on fire regimes. I weave together human niche construction theory and ecological resilience, creating connections between archaeology, paleoecology, and fire ecology. Three, stand-alone studies illustrate the usefulness of these methods and theories for charting changes in land-use, fire-regimes, and vegetation communities during the Neolithic Transition (7600 - 3800 cal. BP) in eastern Spain. In the first study (Ch. II), I analyze archaeological survey data using Bayesian methods to extract land-use intensities from mixed surface assemblages from a case study in the Canal de Navarrés. The second study (Ch. III) builds on the archaeological data collected computational model of landscape fire, charcoal dispersion, and deposition to test how multiple models of natural and anthropogenic fire activity contributed to the formation a single sedimentary charcoal dataset from the Canal de Navarrés. Finally, the third study (Ch. IV) incorporates the modeling and data generated in the previous chapters into sampling and analysis of sedimentary charcoal data from alluvial contexts in three study areas throughout eastern Spain. Results indicate that anthropogenic fire played a significant role in the creation of agricultural landscapes during the Neolithic period, but sustained, low-intensity burning after the late Neolithic period maintained the human created niche for millennia beyond the arrival of agro-pastoral land-use. With global fire activity on the rise, it is vital to incorporate perspectives on the origins, development, and maintenance of human-fire relationships to effectively manage fire in today’s coupled social-ecological landscapes.
ContributorsSnitker, Grant (Author) / Barton, Michael (Thesis advisor) / Morehart, Christopher (Committee member) / Franklin, Janet (Committee member) / Arizona State University (Publisher)
Created2019
154295-Thumbnail Image.png
Description
This study explores how early modern humans used stone tool technology to adapt to changing climates and coastlines in the Middle Stone Age of South Africa. The MSA is associated with the earliest fossil evidence for modern humans and complex cultural behaviors during a time period of dramatic climate change.

This study explores how early modern humans used stone tool technology to adapt to changing climates and coastlines in the Middle Stone Age of South Africa. The MSA is associated with the earliest fossil evidence for modern humans and complex cultural behaviors during a time period of dramatic climate change. Human culture allows for the creation, use, and transmission of technological knowledge that can evolve with changing environmental conditions. Understanding the interactions between technology and the environment is essential to illuminating the role of culture during the origin of our species. This study is focused on understanding ancient tool use from the study of lithic edge damage patterns at archaeological assemblages in southern Africa by using image-based quantitative methods for analyzing stone tools. An extensive experimental program using replicated stone tools provides the comparative linkages between the archaeological artifacts and the tasks for which they were used. MSA foragers structured their tool use and discard behaviors on the landscape in several ways – by using and discarding hunting tools more frequently in the field rather than in caves/rockshelters, but similarly in coastal and interior contexts. This study provides evidence that during a significant microlithic technological shift seen in southern Africa at ~75,000 years ago, new technologies were developed alongside rather than replacing existing technologies. These results are compared with aspects of the European archaeological record at this time to identify features of early human technological behavior that may be unique to the evolutionary history of our species.
ContributorsSchoville, Benjamin J (Author) / Marean, Curtis W (Thesis advisor) / Barton, Michael (Committee member) / Hill, Kim (Committee member) / Arizona State University (Publisher)
Created2016