Matching Items (11,877)
Filtering by

Clear all filters

152348-Thumbnail Image.png
Description
Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e.,

Pathogenic Gram-negative bacteria employ a variety of molecular mechanisms to combat host defenses. Two-component regulatory systems (TCR systems) are the most ubiquitous signal transduction systems which regulate many genes required for virulence and survival of bacteria. In this study, I analyzed different TCR systems in two clinically-relevant Gram-negative bacteria, i.e., oral pathogen Porphyromonas gingivalis and enterobacterial Escherichia coli. P. gingivalis is a major causative agent of periodontal disease as well as systemic illnesses, like cardiovascular disease. A microarray study found that the putative PorY-PorX TCR system controls the secretion and maturation of virulence factors, as well as loci involved in the PorSS secretion system, which secretes proteinases, i.e., gingipains, responsible for periodontal disease. Proteomic analysis (SILAC) was used to improve the microarray data, reverse-transcription PCR to verify the proteomic data, and primer extension assay to determine the promoter regions of specific PorX regulated loci. I was able to characterize multiple genetic loci regulated by this TCR system, many of which play an essential role in hemagglutination and host-cell adhesion, and likely contribute to virulence in this bacterium. Enteric Gram-negative bacteria must withstand many host defenses such as digestive enzymes, low pH, and antimicrobial peptides (AMPs). The CpxR-CpxA TCR system of E. coli has been extensively characterized and shown to be required for protection against AMPs. Most recently, this TCR system has been shown to up-regulate the rfe-rff operon which encodes genes involved in the production of enterobacterial common antigen (ECA), and confers protection against a variety of AMPs. In this study, I utilized primer extension and DNase I footprinting to determine how CpxR regulates the ECA operon. My findings suggest that CpxR modulates transcription by directly binding to the rfe promoter. Multiple genetic and biochemical approaches were used to demonstrate that specific TCR systems contribute to regulation of virulence factors and resistance to host defenses in P. gingivalis and E. coli, respectively. Understanding these genetic circuits provides insight into strategies for pathogenesis and resistance to host defenses in Gram negative bacterial pathogens. Finally, these data provide compelling potential molecular targets for therapeutics to treat P. gingivalis and E. coli infections.
ContributorsLeonetti, Cori (Author) / Shi, Yixin (Thesis advisor) / Stout, Valerie (Committee member) / Nickerson, Cheryl (Committee member) / Sandrin, Todd (Committee member) / Arizona State University (Publisher)
Created2013
150878-Thumbnail Image.png
Description
Teleosts have the most primitive adaptive immune system. However, in terms of functionality the teleost immune system is similar to birds and mammals. On the other hand, enteric bacterial pathogens of mammals and birds present conserved regulatory mechanisms that control virulence factors. In this context, deletion of conserved genes that

Teleosts have the most primitive adaptive immune system. However, in terms of functionality the teleost immune system is similar to birds and mammals. On the other hand, enteric bacterial pathogens of mammals and birds present conserved regulatory mechanisms that control virulence factors. In this context, deletion of conserved genes that control virulence factors have been successfully used as measure to construct live attenuated bacterial vaccines for mammals and birds. Here, I hypothesize that evolutionary conserved genes, which control virulence factors or are essential for bacterial physiology in Enterobacteriaceae, could be used as universal tools to design live attenuated recombinant bacterial vaccines from fish to mammals. The evolutionary conserved genes that control virulence factors, crp and fur, and the essential gene for the synthesis of the cell wall, asd, were studied in Edwardsiella ictaluri to develop a live recombinant vaccine for fish host. The genus Edwardsiella is one of the most ancient represent of the Enterobacteriaceae family. E. ictaluri, a host restricted pathogen of catfish (Ictalurus punctatus), is the causative agent of the enteric septicemia and one of the most important pathogens of this fish aquaculture. Although, crp and fur control different virulence factors in Edwardsiella, in comparison to other enterics, individual deletion of these genes triggered protective immune response at the systemic and mucosal level of the fish. Deletion of asdA gene allowed the creation of a balanced-lethal system to syntheses heterologous antigens. I concluded that crp, fur and asd could be universally used to develop live attenuate recombinant Enterobacteriaceae base vaccines for different hosts.
ContributorsSantander Morales, Javier Alonso (Author) / Curtiss, Roy Iii (Thesis advisor) / Chandler, Douglas (Committee member) / Chang, Yung (Committee member) / Shi, Yixin (Committee member) / Arizona State University (Publisher)
Created2012
151143-Thumbnail Image.png
Description
Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of

Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of these three proteins (and many of their homologs) are known, the exact mechanisms of interaction are still poorly understood. By mutational analysis of the TolC turn 1 residues, a drug hypersensitive mutant has been identified which is defective in functional interactions with AcrA and AcrB. Antibiotic resistant revertants carry alterations in both TolC and AcrA act by stabilizing functional complex assembly and opening of the TolC aperture, as monitored by stability of a labile TolC mutant and sensitivity to vancomycin, respectively. Alterations in the AcrB periplasmic hairpin loops lead to a similar antibiotic hypersensitivity phenotype and destabilized complex assembly. Likewise, alterations in TolC which constitutively open the aperture suppress this antibiotic sensitivity. Suppressor alterations in AcrA and AcrB partially restore antibiotic resistance by mediating stability of the complex. The AcrA suppressor alterations isolated in these studies map to the three crystallized domains and it is concluded they alter the AcrA conformation such that it is permanently fixed in an active state, which wild type only transiently goes through when activated by AcrB. Through this genetic evidence, a direct interaction between TolC and AcrB which is stabilized by AcrA has been proposed. In addition to stabilizing the interactions between TolC and AcrB, AcrA is also responsible for triggering opening of the TolC aperture by mediating energy flow from AcrB to TolC. By permanently altering the conformation of AcrA, suppressor mutants allow defective TolC or AcrB mutants to regain functional interactions lost by the initial mutations. The data provide the genetic proof for direct interaction between AcrB and that AcrA mediated opening of TolC requires AcrB as a scaffold.
ContributorsWeeks, Jon William (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Shi, Yixin (Committee member) / Clark-Curtiss, Josephine (Committee member) / Arizona State University (Publisher)
Created2012
149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149092-Thumbnail Image.png
Description

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus and results are distributed virtually to all patients via the Health Services patient portal. The following is a literature review on past implementations of various process improvement techniques and how they can be applied to the ABCTL testing process to achieve laboratory goals. (abstract)

ContributorsKrell, Abby Elizabeth (Co-author) / Bruner, Ashley (Co-author) / Ramesh, Frankincense (Co-author) / Lewis, Gabriel (Co-author) / Barwey, Ishna (Co-author) / Myers, Jack (Co-author) / Hymer, William (Co-author) / Reagan, Sage (Co-author) / Compton, Carolyn (Thesis director) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
156388-Thumbnail Image.png
Description
The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance

The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance from a mutated protein; this process occurs when the MarR regulates an operon. We hypothesized that different transcriptional regulator genes have interactions with each other. It is known that Salmonella pagC transcription is activated by three regulators, i.e., SlyA, MprA, and PhoP. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) system was used to research the protein-protein interactions in SlyA, MprA, and PhoP as heterodimers and homodimers in vivo. Two fragments, T25 and T18, that lack endogenous adenylate cyclase activity, were used for construction of chimeric proteins and reconstruction of adenylate cyclase activity was tested. The significant adenylate cyclase activities has proved that SlyA is able to form homodimers. However, weak adenylate cyclase activities in this study has proved that MprA and PhoP are not likely to form homodimers, and no protein-protein interactions were detected in between SlyA, MprA and PhoP, which no heterodimers have formed in between three transcriptional regulators.
ContributorsTao, Zenan (Author) / Shi, Yixin (Thesis advisor) / Wang, Xuan (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2018
133340-Thumbnail Image.png
Description
For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today,

For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today, innovations and technological advancements are happening at a pace like never seen before, and technology like automation and artificial intelligence are poised to once again fundamentally alter the way people live and work in society. Whether society is prepared or not, robots are coming to replace human labor, and they are coming fast. In many areas artificial intelligence has disrupted entire industries of the economy. As people continue to make advancements in artificial intelligence, more industries will be disturbed, more jobs will be lost, and entirely new industries and professions will be created in their wake. The future of the economy and society will be determined by how humans adapt to the rapid innovations that are taking place every single day. In this paper I will examine the extent to which automation will take the place of human labor in the future, project the potential effect of automation to future unemployment, and what individuals and society will need to do to adapt to keep pace with rapidly advancing technology. I will also look at the history of automation in the economy. For centuries humans have been advancing technology to make their everyday work more productive and efficient, and for centuries this has forced humans to adapt to the modern technology through things like training and education. The thesis will additionally examine the ways in which the U.S. education system will have to adapt to meet the demands of the advancing economy, and how job retraining programs must be modernized to prepare workers for the changing economy.
ContributorsCunningham, Reed P. (Author) / DeSerpa, Allan (Thesis director) / Haglin, Brett (Committee member) / School of International Letters and Cultures (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133341-Thumbnail Image.png
Description
Businesses stand to face many uncertainties from the moment they start up to every moment in between. A business can try to recognize them and plan ahead, react to them as they occur, or be rocked by a black swan they never saw coming. How a business deals with unforeseen

Businesses stand to face many uncertainties from the moment they start up to every moment in between. A business can try to recognize them and plan ahead, react to them as they occur, or be rocked by a black swan they never saw coming. How a business deals with unforeseen events can increase its potential for success or failure. With this in mind, there is no better bridge between the here and now and the future than planning for change in order to move a company toward preparing for change, adapting to change and achieving optimal results. Interested in taking a step toward the digital age, Alpha Homes Management, Inc. (Alpha Homes) sought our help to explore ideas and options to take their company to a new level. This Barrett Creative Project was centered on designing a system for Alpha Homes that will replace their outdated paper-based system with a more digital one. This aligns with the project also featured as a capstone project as required by the information technology degree expectations. In supplement to the capstone, and for the Barrett Creative Project, the final product was presented to the owners of Alpha Homes Management, Inc. to be utilized by the business. The end goal is to provide a platform which provides a paperless environment for documentation and bring the company a step closer to having a robust internet presence. Now that the web-based application product has been created and presented, the testing phase can now begin to evaluate its efficacy.
ContributorsBrice-Nash, Tristan (Co-author) / Alfawzan, Mohammad (Co-author) / Doheny, Damien (Thesis director) / Rodriguez, Carlos (Committee member) / Information Technology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133342-Thumbnail Image.png
Description
An ethical dilemma is not a matter of “right” versus “wrong,” but rather it is a situation of conflicting values. A common ethical dilemma is that of honesty versus loyalty—is it better to tell the truth, or remain loyal to the company? In the Japanese culture, truth is

An ethical dilemma is not a matter of “right” versus “wrong,” but rather it is a situation of conflicting values. A common ethical dilemma is that of honesty versus loyalty—is it better to tell the truth, or remain loyal to the company? In the Japanese culture, truth is circumstantial and can vary with different situations. In a way, the Japanese idea of honesty reflects how highly they value loyalty. This overlap of values results in the lack of an ethical dilemma for the Japanese, which creates a new risk for fraud. Without this struggle, a Japanese employee does not have strong justification against committing fraud if it aligns with his values of honesty and loyalty.
This paper looks at the Japanese values relating to honesty and loyalty to show how much these ideas overlap. The lack of a conflict of values creates a risk for fraud, which will be shown through an analysis of the scandals of two Japanese companies, Toshiba and Olympus. These scandals shine light on the complexity of the ethical dilemma for the Japanese employees; since their sense of circumstantial honesty encourages them to lie if it maintains the harmony of the group, there is little stopping them from committing the fraud that their superiors asked them to commit.
In a global economy, understanding the ways that values impact business and decisions is important for both interacting with others and anticipating potential conflicts, including those that may result in or indicate potential red flags for fraud.
ContributorsTabar, Kelly Ann (Author) / Samuelson, Melissa (Thesis director) / Goldman, Alan (Committee member) / WPC Graduate Programs (Contributor) / W.P. Carey School of Business (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133343-Thumbnail Image.png
Description
This paper will be exploring a marketing plan for a Kpop Fan artist, Jennifer Lee. Kpop is a genre of music originating from South Korea that provides a whole-package entertainment. Fan artists are producers who create produce for the consumption and purchase of other Kpop fans. The paper will consider

This paper will be exploring a marketing plan for a Kpop Fan artist, Jennifer Lee. Kpop is a genre of music originating from South Korea that provides a whole-package entertainment. Fan artists are producers who create produce for the consumption and purchase of other Kpop fans. The paper will consider segmentation and the products and platforms that best target them in order to maximize revenue. A survey was performed with a sample size of 314 participants to find out consumer behavior and preference as well as producer situation. Consumers come from both the United States and abroad. Customers come directly and almost exclusively from followers. Therefore, increasing the number of followers on Instagram is essential to increasing revenue. Jennifer has time, resource, and ability constraints, while the market has limited potential. The conclusion is that Jennifer should become more organized as a business. To grow her following, she should cater more towards the most popular fandoms (BTS), make art tutorials, consider collaborations, and better inform followers of her products/services available for purchase. The social media platforms key to marketing Jennifer's products are Instagram and Twitter. Other platforms to be used to increase exposure are Tumblr, Amino Apps, DeviantArt, Reddit, and YouTube. She must also declutter all of these virtual storefronts of unnecessary content to varying degrees in order to build ease of access and a trustworthy brand image. The best platforms for transaction is a personal store, RedBubble (a website that allows users to sell a variety of products with their uploaded images printed onto them), Patreon, and in-person at conventions.
ContributorsXu, Everest Christine (Author) / Eaton, Kathryn (Thesis director) / Ingram-Waters, Mary (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05