Matching Items (11,611)
Filtering by

Clear all filters

164297-Thumbnail Image.png
Description
The research shows that existing interventions that attempt to reduce sedentary behavior are effective. The purposes of this review were to examine: (1) how adherent individuals are to workplace sedentary behavior interventions in the short and long term and (2) how the use of incentives impact adherence in the short

The research shows that existing interventions that attempt to reduce sedentary behavior are effective. The purposes of this review were to examine: (1) how adherent individuals are to workplace sedentary behavior interventions in the short and long term and (2) how the use of incentives impact adherence in the short and long term. It was found that short-term studies showed higher rates of adherence than medium-term studies. Studies that used incentives showed lower rates of adherence than studies that did not use incentives. Medium-term studies that used incentives showed the same rates of adherence as short-term studies that used incentives, indicating that incentives can benefit adherence in longer term interventions.
ContributorsLitevsky, Gabriella (Author) / Buman, Matthew (Thesis director) / Leonard, Krista (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
164597-Thumbnail Image.png
Description
The goal of this research project is to determine how beneficial machine learning (ML) techniquescan be in predicting recessions. Past work has utilized a multitude of classification methods from Probit models to linear Support Vector Machines (SVMs) and obtained accuracies nearing 60-70%, where some models even predicted the Great Recession

The goal of this research project is to determine how beneficial machine learning (ML) techniquescan be in predicting recessions. Past work has utilized a multitude of classification methods from Probit models to linear Support Vector Machines (SVMs) and obtained accuracies nearing 60-70%, where some models even predicted the Great Recession based off data from the previous 50 years. This paper will build on past work, by starting with less complex classification techniques that are more broadly used in recession forecasting and end by incorporating more complex ML models that produce higher accuracies than their more primitive counterparts. Many models were tested in this analysis and the findings here corroborate past work that the SVM methodology produces more accurate results than currently used probit models, but adds on that other ML models produced sufficient accuracy as well.
ContributorsHogan, Carter (Author) / McCulloch, Robert (Thesis director) / Pereira, Claudiney (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description

This thesis creative project involved the planning, preparation, and facilitation of a community-wide event targeting Diabetes Awareness. The event was hosted March 16, 2022, on ASU west campus and includes a PowerPoint presentation of the overall process. It also includes a reflection of successes, challenges, and experience gained from planning

This thesis creative project involved the planning, preparation, and facilitation of a community-wide event targeting Diabetes Awareness. The event was hosted March 16, 2022, on ASU west campus and includes a PowerPoint presentation of the overall process. It also includes a reflection of successes, challenges, and experience gained from planning and facilitation. At the end, there is information analyzing how the event could be improved upon for the future, and a summary of key ideas discussed throughout the project. There is also a paper with the description of the presentation and an embedded link to the recorded presentation of the project during the defense.

ContributorsErwin, Jared (Author) / Connell, Janice (Thesis director) / Grozier, Darren (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
164604-Thumbnail Image.png
ContributorsErwin, Jared (Author) / Connell, Janice (Thesis director) / Grozier, Darren (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
164605-Thumbnail Image.png
ContributorsErwin, Jared (Author) / Connell, Janice (Thesis director) / Grozier, Darren (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor)
Created2022-05
164606-Thumbnail Image.png
Description
When exposed to radiation, many electronic components become damaged and operate incorrectly. Making sure these components are resistant to radiation effects is especially important for components used in space flight operations. At low dose rates, a phenomenon known as the enhanced low dose rate sensitivity (ELDRS) effect causes an increase

When exposed to radiation, many electronic components become damaged and operate incorrectly. Making sure these components are resistant to radiation effects is especially important for components used in space flight operations. At low dose rates, a phenomenon known as the enhanced low dose rate sensitivity (ELDRS) effect causes an increase in current within linear bipolar circuits. This increase in current is not desirable for space flight operations. Correctly selecting radiation hardened components or figuring out how to deal with the effects for space operation is important, however, radiation testing each component is very expensive and time consuming. To further the future of space travel, a more efficient way of testing is highly desired by the space industry. A low-cost and time-efficient solution is the IMPACT tool. The Multiscale Tool for Modeling Radiation Effects in Linear Bipolar Circuits project aims to improve the existing IMPACT tool for radiation simulation. This tool contains a database of commonly used linear bipolar circuits and allows the user to model the radiation effects. Currently the tool is not very easy to use and the circuit database is limited. The team’s goal and overall outcome of the project is to deliver the IMPACT tool with a user-friendly interface and an expanded circuit database. The team is using multiple tools to improve the overall appearance of the IMPACT tool and running simulations to collect any necessary data for the database expansion. In our thesis, Kerri and Kylie are using LTSpice simulations to expand the database. Cheyenne is using TCAD modeling to create TCAD models of transistors and compare them with her other group member’s simulations.
ContributorsCook, Cheyenne (Author) / Welch, Kerri (Co-author) / Welch, Kylie (Co-author) / Barnaby, Hugh (Thesis director) / Kozicki, Michael (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
164607-Thumbnail Image.png
Description
When exposed to radiation, many electronic components become damaged and operate incorrectly. Making sure these components are resistant to radiation effects is especially important for components used in space flight operations. At low dose rates, a phenomenon known as the enhanced low dose rate sensitivity (ELDRS) effect causes an increase

When exposed to radiation, many electronic components become damaged and operate incorrectly. Making sure these components are resistant to radiation effects is especially important for components used in space flight operations. At low dose rates, a phenomenon known as the enhanced low dose rate sensitivity (ELDRS) effect causes an increase in current within linear bipolar circuits. This increase in current is not desirable for space flight operations. Correctly selecting radiation hardened components or figuring out how to deal with the effects for space operation is important, however, radiation testing each component is very expensive and time consuming. To further the future of space travel, a more efficient way of testing is highly desired by the space industry. A low-cost and time-efficient solution is the IMPACT tool. The Multiscale Tool for Modeling Radiation Effects in Linear Bipolar Circuits project aims to improve the existing IMPACT tool for radiation simulation. This tool contains a database of commonly used linear bipolar circuits and allows the user to model the radiation effects. Currently the tool is not very easy to use and the circuit database is limited. The team’s goal and overall outcome of the project is to deliver the IMPACT tool with a user-friendly interface and an expanded circuit database. The team is using multiple tools to improve the overall appearance of the IMPACT tool and running simulations to collect any necessary data for the database expansion. In our thesis, Kerri and Kylie are using LTSpice simulations to expand the database. Cheyenne is using TCAD modeling to create TCAD models of transistors and compare them with her other group member’s simulations.
ContributorsWelch, Kylie (Author) / Welch, Kerri (Co-author) / Cook, Cheyenne (Co-author) / Barnaby, Hugh (Thesis director) / Kozicki, Michael (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
164608-Thumbnail Image.png
Description
When exposed to radiation, many electronic components become damaged and operate incorrectly. Making sure these components are resistant to radiation effects is especially important for components used in space flight operations. At low dose rates, a phenomenon known as the enhanced low dose rate sensitivity (ELDRS) effect causes an increase

When exposed to radiation, many electronic components become damaged and operate incorrectly. Making sure these components are resistant to radiation effects is especially important for components used in space flight operations. At low dose rates, a phenomenon known as the enhanced low dose rate sensitivity (ELDRS) effect causes an increase in current within linear bipolar circuits. This increase in current is not desirable for space flight operations. Correctly selecting radiation hardened components or figuring out how to deal with the effects for space operation is important, however, radiation testing each component is very expensive and time consuming. To further the future of space travel, a more efficient way of testing is highly desired by the space industry. A low-cost and time-efficient solution is the IMPACT tool. The Multiscale Tool for Modeling Radiation Effects in Linear Bipolar Circuits project aims to improve the existing IMPACT tool for radiation simulation. This tool contains a database of commonly used linear bipolar circuits and allows the user to model the radiation effects. Currently the tool is not very easy to use and the circuit database is limited. The team’s goal and overall outcome of the project is to deliver the IMPACT tool with a user-friendly interface and an expanded circuit database. The team is using multiple tools to improve the overall appearance of the IMPACT tool and running simulations to collect any necessary data for the database expansion. In our thesis, Kerri and Kylie are using LTSpice simulations to expand the database. Cheyenne is using TCAD modeling to create TCAD models of transistors and compare them with her other group member’s simulations.
ContributorsWelch, Kerri (Author) / Welch, Kylie (Co-author) / Cook, Cheyenne (Co-author) / Barnaby, Hugh (Thesis director) / Kozicki, Michael (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
Description

Since the 1980’s, there has been a growing interest in the concept of sustainability. The prime directive of sustainability is to balance the needs of economics, environmental health, and human society. The change in the global climate, loss of biodiversity, increased levels of pollution, and general trend toward resource scarcity

Since the 1980’s, there has been a growing interest in the concept of sustainability. The prime directive of sustainability is to balance the needs of economics, environmental health, and human society. The change in the global climate, loss of biodiversity, increased levels of pollution, and general trend toward resource scarcity have all increased the momentum of the contemporary sustainability movement. Simultaneously, poverty and nutrition scarcity have attracted many to sustainability’s principles of resource equity. What one can gather from the diversity of sustainability’s intended functions is that it’s meant to solve several problems at once. In another sense, the most impactful sustainability solutions are multipurpose. This is not to say that any given solution is a panacea. On the contrary, sustainability advocates often dispute the existence of so-called “silver bullets” for these global issues. While this tends to reign true, it does not stop policy makers, communities, or researchers from attempting to employ multifaceted solutions. One such example is the myriad of sustainability issues associated with industrial agriculture. With the compounding issues of high water consumption, habitat destruction via land use change, biodiversity loss and climate change, industrial agriculture appears to be a damaging system. Areas like Arizona are projected to be affected by many of these issues. It thus stands to reason that if Arizona is to aggressively address its long-term drought, as well as global sustainability issues, a systematic change in farming practices needs to be made. Firstly, an analysis of the agricultural and water histories of Arizona will highlight the events most relevant to the region’s contemporary issues. Following this, the analysis will frame the greater problem through specific pieces of evidence associated with water scarcity in Arizona. Then, a summary of findings will illustrate the fundamental theories surrounding regenerative agriculture and three of its alternative forms: permaculture, dryland farming, and carbon farming. These theories will be instrumental in recommending a useful conception of regenerative agriculture for Arizona; it will be known as a Regenerative Dryland Farming System (RDFS). The extent and utility of current solutions will then be explored. The remainder of the section will illustrate the principles of the RDFSs, explore their potential weaknesses, and recommend policy for their successful deployment. Overall, it will be argued that RDFSs should fully replace industrial agriculture in Arizona. This will be vital in addressing the nine planetary boundaries and freshwater reality of the region.

ContributorsMeyers, Scott (Author) / Behravesh, Shirley-Ann (Thesis director) / Merrigan, Kathleen (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor)
Created2022-05
164610-Thumbnail Image.png
ContributorsMeyers, Scott (Author) / Behravesh, Shirley-Ann (Thesis director) / Merrigan, Kathleen (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2022-05