Matching Items (11,553)
Filtering by

Clear all filters

149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149092-Thumbnail Image.png
Description

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus and results are distributed virtually to all patients via the Health Services patient portal. The following is a literature review on past implementations of various process improvement techniques and how they can be applied to the ABCTL testing process to achieve laboratory goals. (abstract)

ContributorsKrell, Abby Elizabeth (Co-author) / Bruner, Ashley (Co-author) / Ramesh, Frankincense (Co-author) / Lewis, Gabriel (Co-author) / Barwey, Ishna (Co-author) / Myers, Jack (Co-author) / Hymer, William (Co-author) / Reagan, Sage (Co-author) / Compton, Carolyn (Thesis director) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
156370-Thumbnail Image.png
Description
A novel clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) tool for simultaneous gene editing and regulation was designed and tested. This study used the CRISPR-associated protein 9 (Cas9) endonuclease in complex with a 14-nucleotide (nt) guide RNA (gRNA) to repress a gene of interest using the Krüppel associated box (KRAB)

A novel clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) tool for simultaneous gene editing and regulation was designed and tested. This study used the CRISPR-associated protein 9 (Cas9) endonuclease in complex with a 14-nucleotide (nt) guide RNA (gRNA) to repress a gene of interest using the Krüppel associated box (KRAB) domain, while also performing a separate gene modification using a 20-nt gRNA targeted to a reporter vector. DNA Ligase IV (LIGIV) was chosen as the target for gene repression, given its role in nonhomologous end joining, a common DNA repair process that competes with the more precise homology-directed repair (HDR).

To test for gene editing, a 20-nt gRNA was designed to target a disrupted enhanced green fluorescent protein (EGFP) gene present in a reporter vector. After the gRNA introduced a double-stranded break, cells attempted to repair the cut site via HDR using a DNA template within the reporter vector. In the event of successful gene editing, the EGFP sequence was restored to a functional state and green fluorescence was detectable by flow cytometry. To achieve gene repression, a 14-nt gRNA was designed to target LIGIV. The gRNA included a com protein recruitment domain, which recruited a Com-KRAB fusion protein to facilitate gene repression via chromatin modification of LIGIV. Quantitative polymerase chain reaction was used to quantify repression.

This study expanded upon earlier advancements, offering a novel and versatile approach to genetic modification and transcriptional regulation using CRISPR/Cas9. The overall results show that both gene editing and repression were occurring, thereby providing support for a novel CRISPR/Cas system capable of simultaneous gene modification and regulation. Such a system may enhance the genome engineering capabilities of researchers, benefit disease research, and improve the precision with which gene editing is performed.
ContributorsChapman, Jennifer E (Author) / Kiani, Samira (Thesis advisor) / Ugarova, Tatiana (Thesis advisor) / Marchant, Gary (Committee member) / Arizona State University (Publisher)
Created2018
156042-Thumbnail Image.png
Description
The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial

The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial proteins expressed in human cell lines, yet they exhibit an organizing principle: that genes and proteins may be treated as modular units that can be moved from their native organism to a novel one. However, protein behavior is always unpredictable; drop-in functionality is not guaranteed.

My work characterizes how two different classes of tools behave in new contexts and explores methods to improve their functionality: 1. CRISPR/Cas9 in human cells and 2. quorum sensing networks in Escherichia coli.

1. The genome-editing tool CRISPR/Cas9 has facilitated easily targeted, effective, high throughput genome editing. However, Cas9 is a bacterially derived protein and its behavior in the complex microenvironment of the eukaryotic nucleus is not well understood. Using transgenic human cell lines, I found that gene-silencing heterochromatin impacts Cas9’s ability to bind and cut DNA in a site-specific manner and I investigated ways to improve CRISPR/Cas9 function in heterochromatin.

2. Bacteria use quorum sensing to monitor population density and regulate group behaviors such as virulence, motility, and biofilm formation. Homoserine lactone (HSL) quorum sensing networks are of particular interest to synthetic biologists because they can function as “wires” to connect multiple genetic circuits. However, only four of these networks have been widely implemented in engineered systems. I selected ten quorum sensing networks based on their HSL production profiles and confirmed their functionality in E. coli, significantly expanding the quorum sensing toolset available to synthetic biologists.
ContributorsDaer, René (Author) / Haynes, Karmella (Thesis advisor) / Brafman, David (Committee member) / Nielsen, David (Committee member) / Kiani, Samira (Committee member) / Arizona State University (Publisher)
Created2017
156623-Thumbnail Image.png
Description
Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting,

Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting, and controlling gene transcriptional networks are presented and applied to two synthetic gene network contexts. First, this engineering approach is used to improve the function of the guide ribonucleic acid (gRNA)-targeted, dCas9-regulated transcriptional cascades through analysis and targeted modification of the RNA transcript. In so doing, a fluorescent guide RNA (fgRNA) is developed to more clearly observe gRNA dynamics and aid design. It is shown that through careful optimization, RNA Polymerase II (Pol II) driven gRNA transcripts can be strong enough to exhibit measurable cascading behavior, previously only shown in RNA Polymerase III (Pol III) circuits. Second, inherent gene expression noise is used to achieve precise fractional differentiation of a population. Mathematical methods are employed to predict and understand the observed behavior, and metrics for analyzing and quantifying similar differentiation kinetics are presented. Through careful mathematical analysis and simulation, coupled with experimental data, two methods for achieving ratio control are presented, with the optimal schema for any application being dependent on the noisiness of the system under study. Together, these studies push the boundaries of gene network control, with potential applications in stem cell differentiation, therapeutics, and bio-production.
ContributorsMenn, David J (Author) / Wang, Xiao (Thesis advisor) / Kiani, Samira (Committee member) / Haynes, Karmella (Committee member) / Nielsen, David (Committee member) / Marshall, Pamela (Committee member) / Arizona State University (Publisher)
Created2018
157268-Thumbnail Image.png
Description
Chromatin is the dynamic structure of proteins and nucleic acids into which eukaryotic genomes are organized. For those looking to engineer mammalian genomes, chromatin is both an opportunity and an obstacle. While chromatin provides another tool with which to control gene expression, regional density can lead to variability in genome

Chromatin is the dynamic structure of proteins and nucleic acids into which eukaryotic genomes are organized. For those looking to engineer mammalian genomes, chromatin is both an opportunity and an obstacle. While chromatin provides another tool with which to control gene expression, regional density can lead to variability in genome editing efficiency by CRISPR/Cas9 systems. Many groups have attempted to de-silence chromatin to regulate genes and enhance DNA's accessibility to nucleases, but inconsistent results leave outstanding questions. Here, I test different types of activators, to analyze changes in chromatin features that result for chromatin opening, and to identify the critical biochemical features that support artificially generated open, transcriptionally active chromatin.

I designed, built, and tested a panel of synthetic pioneer factors (SPiFs) to open condensed, repressive chromatin with the aims of 1) activating repressed transgenes in mammalian cells and 2) reversing the inhibitory effects of closed chromatin on Cas9-endonuclease activity. Pioneer factors are unique in their ability to bind DNA in closed chromatin. In order to repurpose this natural function, I designed SPiFs from a Gal4 DNA binding domain, which has inherent pioneer functionality, fused with chromatin-modifying peptides with distinct functions.

SPiFs with transcriptional activation as their primary mechanism were able to reverse this repression and induced a stably active state. My work also revealed the active site from proto-oncogene MYB as a novel transgene activator. To determine if MYB could be used generally to restore transgene expression, I fused it to a deactivated Cas9 and targeted a silenced transgene in native heterochromatin. The resulting activator was able to reverse silencing and can be chemically controlled with a small molecule drug.

Other SPiFs in my panel did not increase gene expression. However, pretreatment with several of these expression-neutral SPiFs increased Cas9-mediated editing in closed chromatin, suggesting a crucial difference between chromatin that is accessible and that which contains genes being actively transcribed. Understanding this distinction will be vital to the engineering of stable transgenic cell lines for product production and disease modeling, as well as therapeutic applications such as restoring epigenetic order to misregulated disease cells.
ContributorsBarrett, Cassandra M (Author) / Haynes, Karmella A (Thesis advisor) / Rege, Kaushal (Committee member) / Mills, Jeremy (Committee member) / Kiani, Samira (Committee member) / Arizona State University (Publisher)
Created2019
133340-Thumbnail Image.png
Description
For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today,

For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today, innovations and technological advancements are happening at a pace like never seen before, and technology like automation and artificial intelligence are poised to once again fundamentally alter the way people live and work in society. Whether society is prepared or not, robots are coming to replace human labor, and they are coming fast. In many areas artificial intelligence has disrupted entire industries of the economy. As people continue to make advancements in artificial intelligence, more industries will be disturbed, more jobs will be lost, and entirely new industries and professions will be created in their wake. The future of the economy and society will be determined by how humans adapt to the rapid innovations that are taking place every single day. In this paper I will examine the extent to which automation will take the place of human labor in the future, project the potential effect of automation to future unemployment, and what individuals and society will need to do to adapt to keep pace with rapidly advancing technology. I will also look at the history of automation in the economy. For centuries humans have been advancing technology to make their everyday work more productive and efficient, and for centuries this has forced humans to adapt to the modern technology through things like training and education. The thesis will additionally examine the ways in which the U.S. education system will have to adapt to meet the demands of the advancing economy, and how job retraining programs must be modernized to prepare workers for the changing economy.
ContributorsCunningham, Reed P. (Author) / DeSerpa, Allan (Thesis director) / Haglin, Brett (Committee member) / School of International Letters and Cultures (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133341-Thumbnail Image.png
Description
Businesses stand to face many uncertainties from the moment they start up to every moment in between. A business can try to recognize them and plan ahead, react to them as they occur, or be rocked by a black swan they never saw coming. How a business deals with unforeseen

Businesses stand to face many uncertainties from the moment they start up to every moment in between. A business can try to recognize them and plan ahead, react to them as they occur, or be rocked by a black swan they never saw coming. How a business deals with unforeseen events can increase its potential for success or failure. With this in mind, there is no better bridge between the here and now and the future than planning for change in order to move a company toward preparing for change, adapting to change and achieving optimal results. Interested in taking a step toward the digital age, Alpha Homes Management, Inc. (Alpha Homes) sought our help to explore ideas and options to take their company to a new level. This Barrett Creative Project was centered on designing a system for Alpha Homes that will replace their outdated paper-based system with a more digital one. This aligns with the project also featured as a capstone project as required by the information technology degree expectations. In supplement to the capstone, and for the Barrett Creative Project, the final product was presented to the owners of Alpha Homes Management, Inc. to be utilized by the business. The end goal is to provide a platform which provides a paperless environment for documentation and bring the company a step closer to having a robust internet presence. Now that the web-based application product has been created and presented, the testing phase can now begin to evaluate its efficacy.
ContributorsBrice-Nash, Tristan (Co-author) / Alfawzan, Mohammad (Co-author) / Doheny, Damien (Thesis director) / Rodriguez, Carlos (Committee member) / Information Technology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133342-Thumbnail Image.png
Description
An ethical dilemma is not a matter of “right” versus “wrong,” but rather it is a situation of conflicting values. A common ethical dilemma is that of honesty versus loyalty—is it better to tell the truth, or remain loyal to the company? In the Japanese culture, truth is

An ethical dilemma is not a matter of “right” versus “wrong,” but rather it is a situation of conflicting values. A common ethical dilemma is that of honesty versus loyalty—is it better to tell the truth, or remain loyal to the company? In the Japanese culture, truth is circumstantial and can vary with different situations. In a way, the Japanese idea of honesty reflects how highly they value loyalty. This overlap of values results in the lack of an ethical dilemma for the Japanese, which creates a new risk for fraud. Without this struggle, a Japanese employee does not have strong justification against committing fraud if it aligns with his values of honesty and loyalty.
This paper looks at the Japanese values relating to honesty and loyalty to show how much these ideas overlap. The lack of a conflict of values creates a risk for fraud, which will be shown through an analysis of the scandals of two Japanese companies, Toshiba and Olympus. These scandals shine light on the complexity of the ethical dilemma for the Japanese employees; since their sense of circumstantial honesty encourages them to lie if it maintains the harmony of the group, there is little stopping them from committing the fraud that their superiors asked them to commit.
In a global economy, understanding the ways that values impact business and decisions is important for both interacting with others and anticipating potential conflicts, including those that may result in or indicate potential red flags for fraud.
ContributorsTabar, Kelly Ann (Author) / Samuelson, Melissa (Thesis director) / Goldman, Alan (Committee member) / WPC Graduate Programs (Contributor) / W.P. Carey School of Business (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133343-Thumbnail Image.png
Description
This paper will be exploring a marketing plan for a Kpop Fan artist, Jennifer Lee. Kpop is a genre of music originating from South Korea that provides a whole-package entertainment. Fan artists are producers who create produce for the consumption and purchase of other Kpop fans. The paper will consider

This paper will be exploring a marketing plan for a Kpop Fan artist, Jennifer Lee. Kpop is a genre of music originating from South Korea that provides a whole-package entertainment. Fan artists are producers who create produce for the consumption and purchase of other Kpop fans. The paper will consider segmentation and the products and platforms that best target them in order to maximize revenue. A survey was performed with a sample size of 314 participants to find out consumer behavior and preference as well as producer situation. Consumers come from both the United States and abroad. Customers come directly and almost exclusively from followers. Therefore, increasing the number of followers on Instagram is essential to increasing revenue. Jennifer has time, resource, and ability constraints, while the market has limited potential. The conclusion is that Jennifer should become more organized as a business. To grow her following, she should cater more towards the most popular fandoms (BTS), make art tutorials, consider collaborations, and better inform followers of her products/services available for purchase. The social media platforms key to marketing Jennifer's products are Instagram and Twitter. Other platforms to be used to increase exposure are Tumblr, Amino Apps, DeviantArt, Reddit, and YouTube. She must also declutter all of these virtual storefronts of unnecessary content to varying degrees in order to build ease of access and a trustworthy brand image. The best platforms for transaction is a personal store, RedBubble (a website that allows users to sell a variety of products with their uploaded images printed onto them), Patreon, and in-person at conventions.
ContributorsXu, Everest Christine (Author) / Eaton, Kathryn (Thesis director) / Ingram-Waters, Mary (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05