Matching Items (11,927)
Filtering by

Clear all filters

154167-Thumbnail Image.png
Description
The influence of temperature on soil engineering properties is a major concern in the design of engineering systems such as radioactive waste disposal barriers, ground source heat pump systems and pavement structures. In particular, moisture redistribution under pavement systems might lead to changes in unbound material stiffness that will affect

The influence of temperature on soil engineering properties is a major concern in the design of engineering systems such as radioactive waste disposal barriers, ground source heat pump systems and pavement structures. In particular, moisture redistribution under pavement systems might lead to changes in unbound material stiffness that will affect pavement performance. Accurate measurement of thermal effects on unsaturated soil hydraulic properties may lead to reduction in design and construction costs. This thesis presents preliminary results of an experimental study aimed at determining the effect of temperature on the soil water characteristic curve (SWCC) and the unsaturated hydraulic conductivity function (kunsat). Pressure plate devices with volume change control were used to determine the SWCC and the instantaneous profile method was used to obtain the kunsat function. These properties were measured on two fine-grained materials subjected to controlled temperatures of 5oC, 25oC and 40oC. The results were used to perform a sensitivity analysis of the effect of temperature changes on the prediction of moisture movement under a covered area. In addition, two more simulations were performed where changes in hydraulic properties were done in a stepwise fashion. The findings were compared to field measured water content data obtained on the subgrade material of the FAA William Hughes test facility located in Atlantic City. Results indicated that temperature affects the unsaturated hydraulic properties of the two soils used in the study. For the DuPont soil, a soil with high plasticity, it was found that the water retention was higher at low temperatures for suction levels lower than about 10,000 kPa; while the kunsat functions at the three temperatures were not significantly different. For the County soil, a material with medium plasticity, it was found that it holds around 10% more degree of saturation at 5°C than that at 40°C for suction levels higher than about 1,000 kPa; while the hydraulic conductivity at 40°C was at least one order of magnitude higher than that at 5°C, for suction levels higher than 1,000 kPa. These properties were used to perform two types of numerical analyses: a sensitivity analysis and stepwise analysis. Absolute differences between predicted and field measured data were considered to be acceptable, ranging from 4.5% to 9% for all simulations. Overall results show an improvement in predictions when non-isothermal conditions were used over the predictions obtained with isothermal conditions.
ContributorsLu, Yutong (Author) / Zapata, Claudia E (Thesis advisor) / Kavazanjian, Edward (Committee member) / Houston, Sandra L. (Committee member) / Arizona State University (Publisher)
Created2015
156066-Thumbnail Image.png
Description
Design and mitigation of infrastructure on expansive soils requires an understanding of unsaturated soil mechanics and consideration of two stress variables (net normal stress and matric suction). Although numerous breakthroughs have allowed geotechnical engineers to study expansive soil response to varying suction-based stress scenarios (i.e. partial wetting), such studies

Design and mitigation of infrastructure on expansive soils requires an understanding of unsaturated soil mechanics and consideration of two stress variables (net normal stress and matric suction). Although numerous breakthroughs have allowed geotechnical engineers to study expansive soil response to varying suction-based stress scenarios (i.e. partial wetting), such studies are not practical on typical projects due to the difficulties and duration needed for equilibration associated with the necessary laboratory testing. The current practice encompasses saturated “conventional” soil mechanics testing, with the implementation of numerous empirical correlations and approximations to obtain an estimate of true field response. However, it has been observed that full wetting rarely occurs in the field, leading to an over-conservatism within a given design when partial wetting conditions are ignored. Many researchers have sought to improve ways of estimation of soil heave/shrinkage through intense studies of the suction-based response of reconstituted clay soils. However, the natural behavior of an undisturbed clay soil sample tends to differ significantly from a remolded sample of the same material.

In this study, laboratory techniques for the determination of soil suction were evaluated, a methodology for determination of the in-situ matric suction of a soil specimen was explored, and the mechanical response to changes in matric suction of natural clay specimens were measured. Suction-controlled laboratory oedometer devices were used to impose partial wetting conditions, similar to those experienced in a natural setting. The undisturbed natural soils tested in the study were obtained from Denver, CO and San Antonio, TX.

Key differences between the soil water characteristic curves of the undisturbed specimen test compared to the conventional reconstituted specimen test are highlighted. The Perko et al. (2000) and the PTI (2008) methods for estimating the relationship between volume and changes in matric suction (i.e. suction compression index) were evaluated by comparison to the directly measured values. Lastly, the directly measured partial wetting swell strain was compared to the fully saturated, one-dimensional, oedometer test (ASTM D4546) and the Surrogate Path Method (Singhal, 2010) to evaluate the estimation of partial wetting heave.
ContributorsOlaiz, Austin Hunter (Author) / Houston, Sandra (Thesis advisor) / Zapata, Claudia (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2017
156161-Thumbnail Image.png
Description
This dissertation focuses on the application of urban metabolism metrology (UMM) to process streams of the natural and built water environment to gauge public health concerning exposure to carcinogenic N-nitrosamines and abuse of narcotics. A survey of sources of exposure to N-nitrosamines in the U.S. population identified contaminated food products

This dissertation focuses on the application of urban metabolism metrology (UMM) to process streams of the natural and built water environment to gauge public health concerning exposure to carcinogenic N-nitrosamines and abuse of narcotics. A survey of sources of exposure to N-nitrosamines in the U.S. population identified contaminated food products (1,900 ± 380 ng/day) as important drivers of attributable cancer risk (Chapter 2). Freshwater sediments in the proximity of U.S. municipal wastewater treatment plants were shown for the first time to harbor carcinogenic N-nitrosamine congeners, including N-nitrosodibutylamine (0.2-3.3 ng/g dw), N-nitrosodiphenylamine (0.2-4.7 ng/g dw), and N-nitrosopyrrolidine (3.4-19.6 ng/g dw) were, with treated wastewater discharge representing one potential factor contributing to the observed contamination (p=0.42) (Chapter 3). Opioid abuse rates in two small midwestern communities were estimated through the application of wastewater-based epidemiology (WBE). Average concentrations of opioids (City 1; City 2) were highest for morphine (713 ± 38, 306 ± 29 ng/L) and varied by for the remainder of the screened analytes. Furthermore, concentrations of the powerful opioid fentanyl (1.7 ± 0.2, 1.0 ± 0.5 ng/L) in wastewater were reported for the first time in the literature for the U.S. (Chapter 4). To gauge narcotic consumption within college-aged adults the WBE process used in Chapter 4 was applied to wastewater collected from a large university in the Southwestern U.S. Estimated narcotics consumption, in units of mg/day/1,000 persons showed the following rank order: cocaine (470 ± 42), heroin (474 ± 32), amphetamine (302 ± 14) and methylphenidate (236 ± 28). Most parental drugs and their respective metabolites showed detection frequencies in campus wastewater of 80% or more, with the notable exception of fentanyl, norfentanyl, buprenorphine, and norbuprenorphine. Estimated consumption of all narcotics, aside from attention-deficit/hyperactivity disorder medication, were higher than values reported in previous U.S. WBE studies for U.S. campuses (Chapter 5). The analyses presented here have identified variation in narcotic consumption habits across different U.S. communities, which can be gauged through UMM. Application of these techniques should be implemented throughout U.S. communities to provide insight into ongoing substance abuse and health issues within a community.
ContributorsGushgari, Adam Jon (Author) / Halden, Rolf U. (Thesis advisor) / Kavazanjian, Edward (Committee member) / Fraser, Matthew (Committee member) / Venkatesan, Arjun (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2018
Description
One of the most economical and viable methods of soil improvement is dynamic compaction. It is a simple process that uses the potential energy of a weight (8 tonne to 36 tonne) dropped from a height of about 1 m to 30 m, depending on the project requirement, on to

One of the most economical and viable methods of soil improvement is dynamic compaction. It is a simple process that uses the potential energy of a weight (8 tonne to 36 tonne) dropped from a height of about 1 m to 30 m, depending on the project requirement, on to the soil to be compacted hence densifying it. However, dynamic compaction can only be applied on soil deposits where the degree of saturation is low and the permeability of the soil mass is high to allow for good drainage. Using dynamic compaction on saturated soil is unsuitable because upon application of the energy, a part of the energy is transferred to the pore water. The technique also does not work very well on soils having a large content of fines because of the absence of good drainage. The current research aims to develop a new technology using biogenic gas production to desaturate saturated soils and extend the use of dynamic compaction as a ground improvement technique to saturated soils with higher fines content. To evaluate the feasibility of this technology an experimental program has been performed. Soil columns with varying soil types have been saturated with substrate solution, resulting in the formation of nitrogen gas and the change in soils volume and saturation have been recorded. Cyclic triaxial tests have been performed to evaluate the change in volume and saturation under elevated pressure conditions and evaluate the response of the desaturated soil specimens to dynamic loading. The experimental results showed that soil specimens treated with MIDP under low confinement conditions undergo substantial volume expansion. The amount of expansion is seen to be a factor of their pore size, which is directly related to their grain size. The smaller the grain size, smaller is the pore size and hence greater the volume expansion. Under higher confining pressure conditions, the expansion during gas formation is suppressed. However, no conclusive result about the effect of the desaturation of the soil using biogenic gas on its compactibility could be obtained from the cyclic triaxial tests.
ContributorsBorah, Devajani (Author) / van Paassen, Leon A. (Thesis advisor) / Kavazanjian, Edward (Committee member) / Zapata, Claudia E. (Committee member) / Arizona State University (Publisher)
Created2018
Description
With the growth of global population, the demand for sustainable infrastructure is significantly increasing. Substructures with appropriate materials are required to be built in or above soil that can support the massive volume of construction demand. However, increased structural requirements often require ground improvement to increase the soil capacity. Moreover,

With the growth of global population, the demand for sustainable infrastructure is significantly increasing. Substructures with appropriate materials are required to be built in or above soil that can support the massive volume of construction demand. However, increased structural requirements often require ground improvement to increase the soil capacity. Moreover, certain soils are prone to liquefaction during an earthquake, which results in significant structural damage and loss of lives. While various soil treatment methods have been developed in the past to improve the soil’s load carrying ability, most of these traditional treatment methods have been found either hazardous and may cause irreversible damage to natural environment, or too disruptive to use beneath or adjacent to existing structures. Thus, alternative techniques are required to provide a more natural and sustainable solution. Biomediated methods of strengthening soil through mineral precipitation, in particular through microbially induced carbonate precipitation (MICP), have recently emerged as a promising means of soil improvement. In MICP, the precipitation of carbonate (usually in the form of calcium carbonate) is mediated by microorganisms and the process is referred to as biomineralization. The precipitated carbonate coats soil particles, precipitates in the voids, and bridges between soil particles, thereby improving the mechanical properties (e.g., strength, stiffness, and dilatancy). Although it has been reported that the soil’s mechanical properties can be extensively enhanced through MICP, the micro-scale mechanisms that influence the macro-scale constitutive response remain to be clearly explained.

The utilization of alternative techniques such as MICP requires an in-depth understanding of the particle-scale contact mechanisms and the ability to predict the improvement in soil properties resulting from calcite precipitation. For this purpose, the discrete element method (DEM), which is extensively used to investigate granular materials, is adopted in this dissertation. Three-dimensional discrete element method (DEM) based numerical models are developed to simulate the response of bio-cemented sand under static and dynamic loading conditions and the micro-scale mechanisms of MICP are numerically investigated. Special focus is paid to the understanding of the particle scale mechanisms that are dominant in the common laboratory scale experiments including undrained and drained triaxial compression when calcite bridges are present in the soil, that enhances its load capacity. The mechanisms behind improvement of liquefaction resistance in cemented sands are also elucidated through the use of DEM. The thesis thus aims to provide the fundamental link that is important in ensuring proper material design for granular materials to enhance their mechanical performance.
ContributorsYang, Pu (Author) / Neithalath, Narayanan (Thesis advisor) / Kavazanjian, Edward (Committee member) / Rajan, S.D. (Committee member) / Mobasher, Barzin (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156994-Thumbnail Image.png
Description
This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment

This dissertation critically evaluated methodologies and devices for assessing and protecting the health of human populations, with particular emphasis on groundwater remediation and the use of wastewater-based epidemiology (WBE) to inform population health. A meta-analysis and assessment of laboratory-scale treatability studies for removing chlorinated solvents from groundwater found that sediment microcosms operated as continuous-flow columns are preferable to batch bottles when seeking to emulate with high fidelity the complex conditions prevailing in the subsurface in contaminated aquifers (Chapter 2). Compared to monitoring at the field-scale, use of column microcosms also showed (i) improved chemical speciation, and (ii) qualitative predictability of field parameters (Chapter 3). Monitoring of glucocorticoid hormones in wastewater of a university campus showed (i) elevated stress levels particularly at the start of the semester, (ii) on weekdays relative to weekend days (p = 0.05) (161 ± 42 μg d-1 per person, 122 ± 54 μg d-1 per person; p ≤ 0.05), and (iii) a positive association between levels of stress hormones and nicotine (rs: 0.49) and caffeine (0.63) consumption in this student population (Chapter 4). Also, (i) alcohol consumption determined by WBE was in line with literature estimates for this young sub-population (11.3 ± 7.5 g d-1 per person vs. 10.1 ± 0.8 g d-1 per person), whereas caffeine and nicotine uses were below (114 ± 49 g d-1 per person, 178 ± 19 g d-1 per person; 627 ± 219 g d-1 per person, 927 ± 243 g d-1 per person). The introduction of a novel continuous in situ sampler to WBE brought noted benefits relative to traditional time-integrated sampling, including (i) a higher sample coverage (93% vs. 3%), (ii) an ability to captured short-term analyte pulses (e.g., heroin, fentanyl, norbuprenorphine, and methadone), and (iii) an overall higher mass capture for drugs of abuse like morphine, fentanyl, methamphetamine, amphetamine, and the opioid antagonist metabolite norbuprenorphine (p ≤ 0.01). Methods and devices developed in this work are poised to find applications in the remediation sector and in human health assessments.
ContributorsDriver, Erin Michelle (Author) / Halden, Rolf (Thesis advisor) / Conroy-Ben, Otakuye (Committee member) / Kavazanjian, Edward (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2018
156935-Thumbnail Image.png
Description
The public has expressed a growing desire for more sustainable and green technologies to be implemented in society. Bio-cementation is a method of soil improvement that satisfies this demand for sustainable and green technology. Bio-cementation can be performed by using microbes or free enzymes which precipitate carbonate within

The public has expressed a growing desire for more sustainable and green technologies to be implemented in society. Bio-cementation is a method of soil improvement that satisfies this demand for sustainable and green technology. Bio-cementation can be performed by using microbes or free enzymes which precipitate carbonate within the treated soil. These methods are referred to as microbial induced carbonate precipitation (MICP) and enzyme induced carbonate precipitation (EICP). The precipitation of carbonate is the formation of crystalline minerals that fill the void spaces within a body of soil.

This thesis investigates the application of EICP in a soil collected from the Arizona State University Polytechnic campus. The surficial soil in the region is known to be a clayey sand. Both EICP and MICP have their limitations in soils consisting of a significant percentage of fines. Fine-grained soils have a greater surface area which requires the precipitation of a greater amount of carbonate to increase the soil’s strength. EICP was chosen due to not requiring any living organisms during the application, having a faster reaction rate and size constraints.

To determine the effectiveness of EICP as a method of improving a soil with a significant amount of fines, multiple comparisons were made: 1) The soil’s strength was analyzed on its own, untreated; 2) The soil was treated with EICP to determine if bio-cementation can strengthen the soil; 3) The soil had sand added to reduce the fines content and was treated with EICP to determine how the fines percentage effects the strength of a soil when treated with EICP.

While the EICP treatment increased the strength of the soil by over 3-fold, the strength was still relatively low when compared to results of other case studies treating sandy soils. More research could be done with triaxial testing due to the samples of the Polytechnic soil’s strength coming from capillarity.
ContributorsRoss, Johnathan (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Hamdan, Nasser (Committee member) / Arizona State University (Publisher)
Created2018
133340-Thumbnail Image.png
Description
For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today,

For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today, innovations and technological advancements are happening at a pace like never seen before, and technology like automation and artificial intelligence are poised to once again fundamentally alter the way people live and work in society. Whether society is prepared or not, robots are coming to replace human labor, and they are coming fast. In many areas artificial intelligence has disrupted entire industries of the economy. As people continue to make advancements in artificial intelligence, more industries will be disturbed, more jobs will be lost, and entirely new industries and professions will be created in their wake. The future of the economy and society will be determined by how humans adapt to the rapid innovations that are taking place every single day. In this paper I will examine the extent to which automation will take the place of human labor in the future, project the potential effect of automation to future unemployment, and what individuals and society will need to do to adapt to keep pace with rapidly advancing technology. I will also look at the history of automation in the economy. For centuries humans have been advancing technology to make their everyday work more productive and efficient, and for centuries this has forced humans to adapt to the modern technology through things like training and education. The thesis will additionally examine the ways in which the U.S. education system will have to adapt to meet the demands of the advancing economy, and how job retraining programs must be modernized to prepare workers for the changing economy.
ContributorsCunningham, Reed P. (Author) / DeSerpa, Allan (Thesis director) / Haglin, Brett (Committee member) / School of International Letters and Cultures (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133341-Thumbnail Image.png
Description
Businesses stand to face many uncertainties from the moment they start up to every moment in between. A business can try to recognize them and plan ahead, react to them as they occur, or be rocked by a black swan they never saw coming. How a business deals with unforeseen

Businesses stand to face many uncertainties from the moment they start up to every moment in between. A business can try to recognize them and plan ahead, react to them as they occur, or be rocked by a black swan they never saw coming. How a business deals with unforeseen events can increase its potential for success or failure. With this in mind, there is no better bridge between the here and now and the future than planning for change in order to move a company toward preparing for change, adapting to change and achieving optimal results. Interested in taking a step toward the digital age, Alpha Homes Management, Inc. (Alpha Homes) sought our help to explore ideas and options to take their company to a new level. This Barrett Creative Project was centered on designing a system for Alpha Homes that will replace their outdated paper-based system with a more digital one. This aligns with the project also featured as a capstone project as required by the information technology degree expectations. In supplement to the capstone, and for the Barrett Creative Project, the final product was presented to the owners of Alpha Homes Management, Inc. to be utilized by the business. The end goal is to provide a platform which provides a paperless environment for documentation and bring the company a step closer to having a robust internet presence. Now that the web-based application product has been created and presented, the testing phase can now begin to evaluate its efficacy.
ContributorsBrice-Nash, Tristan (Co-author) / Alfawzan, Mohammad (Co-author) / Doheny, Damien (Thesis director) / Rodriguez, Carlos (Committee member) / Information Technology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133342-Thumbnail Image.png
Description
An ethical dilemma is not a matter of “right” versus “wrong,” but rather it is a situation of conflicting values. A common ethical dilemma is that of honesty versus loyalty—is it better to tell the truth, or remain loyal to the company? In the Japanese culture, truth is

An ethical dilemma is not a matter of “right” versus “wrong,” but rather it is a situation of conflicting values. A common ethical dilemma is that of honesty versus loyalty—is it better to tell the truth, or remain loyal to the company? In the Japanese culture, truth is circumstantial and can vary with different situations. In a way, the Japanese idea of honesty reflects how highly they value loyalty. This overlap of values results in the lack of an ethical dilemma for the Japanese, which creates a new risk for fraud. Without this struggle, a Japanese employee does not have strong justification against committing fraud if it aligns with his values of honesty and loyalty.
This paper looks at the Japanese values relating to honesty and loyalty to show how much these ideas overlap. The lack of a conflict of values creates a risk for fraud, which will be shown through an analysis of the scandals of two Japanese companies, Toshiba and Olympus. These scandals shine light on the complexity of the ethical dilemma for the Japanese employees; since their sense of circumstantial honesty encourages them to lie if it maintains the harmony of the group, there is little stopping them from committing the fraud that their superiors asked them to commit.
In a global economy, understanding the ways that values impact business and decisions is important for both interacting with others and anticipating potential conflicts, including those that may result in or indicate potential red flags for fraud.
ContributorsTabar, Kelly Ann (Author) / Samuelson, Melissa (Thesis director) / Goldman, Alan (Committee member) / WPC Graduate Programs (Contributor) / W.P. Carey School of Business (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05