Matching Items (10,129)
Filtering by

Clear all filters

152282-Thumbnail Image.png
Description
Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char,

Black carbon (BC) is the product of incomplete combustion of biomass and fossil fuels. It is found ubiquitously in nature and is relevant to studies in atmospheric science, soil science, oceanography, and anthropology. Black carbon is best described using a combustion continuum that sub-classifies BC into slightly charred biomass, char, charcoal and soot. These sub-classifications range in particle size, formation temperature, and relative reactivity. Interest in BC has increased because of its role in the long-term storage of organic matter and the biogeochemistry of urban areas. The global BC budget is unbalanced. Production of BC greatly outweighs decomposition of BC. This suggests that there are unknown or underestimated BC removal processes, and it is likely that some of these processes are occurring in soils. However, little is known about BC reactivity in soil and especially in desert soil. This work focuses on soot BC, which is formed at higher temperatures and has a lower relative reactivity than other forms of BC. Here, I assess the contribution of soot BC to central AZ soils and use the isotopic composition of soot BC to identify sources of soot BC. Soot BC is a significant (31%) fraction of the soil organic matter in central AZ and this work suggests that desert and urban soils may be a storage reservoir for soot BC. I further identify previously unknown removal processes of soot BC found naturally in soil and demonstrate that soil soot BC undergoes abiotic (photo-oxidation) and biotic reactions. Not only is soot BC degraded by these processes, but its chemical composition is altered, suggesting that soot BC contains some chemical moieties that are more reactive than others. Because soot BC demonstrates both refractory and reactive character, it is likely that the structure of soot BC; therefore, its interactions in the environment are complex and it is not simply a recalcitrant material.
ContributorsHamilton, George (Author) / Hartnett, Hilairy E (Thesis advisor) / Herckes, Pierre (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2013
153169-Thumbnail Image.png
Description
Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to

Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to assess the effects of increased interannual precipitation variation on ecosystem functioning in grasslands. In order to address this objective, I used a combination of field experimentation and data synthesis. Precipitation manipulations on the field experiments were carried out using an automated rainfall manipulation system developed as part of this dissertation. Aboveground net primary production responses were monitored during five years. Increased precipitation coefficient of variation decreased primary production regardless of the effect of precipitation amount. Perennial-grass productivity significantly decreased while shrub productivity increased as a result of enhanced precipitation variance. Most interesting is that the effect of precipitation variability increased through time highlighting the existence of temporal lags in ecosystem response.

Further, I investigated the effect of precipitation variation on functional diversity on the same experiment and found a positive response of diversity to increased interannual precipitation variance. Functional evenness showed a similar response resulting from large changes in plant-functional type relative abundance including decreased grass and increased shrub cover while functional richness showed non-significant response. Increased functional diversity ameliorated the direct negative effects of precipitation variation on ecosystem ANPP but did not control ecosystem stability where indirect effects through the dominant plant-functional type determined ecosystem stability.

Analyses of 80 long-term data sets, where I aggregated annual productivity and precipitation data into five-year temporal windows, showed that precipitation variance had a significant effect on aboveground net primary production that is modulated by mean precipitation. Productivity increased with precipitation variation at sites where mean annual precipitation is less than 339 mm but decreased at sites where precipitation is higher than 339 mm. Mechanisms proposed to explain patterns include: differential ANPP response to precipitation among sites, contrasting legacy effects and soil water distribution.

Finally, increased precipitation variance may impact global grasslands affecting plant-functional types in different ways that may lead to state changes, increased erosion and decreased stability that can in turn limit the services provided by these valuable ecosystems.
ContributorsGherardi Arbizu, Laureano (Author) / Sala, Osvaldo E. (Thesis advisor) / Childers, Daniel (Committee member) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Wu, Jingle (Committee member) / Arizona State University (Publisher)
Created2014
149717-Thumbnail Image.png
Description
Coal bed natural gas (CBNG) production has become a significant contribution to the nation's energy supply. Large volumes of water are generated as a byproduct of CBNG extraction, of which this "product water" is relatively high in sodium. High sodicity reduces water quality and limits environmentally compliant disposal options for

Coal bed natural gas (CBNG) production has become a significant contribution to the nation's energy supply. Large volumes of water are generated as a byproduct of CBNG extraction, of which this "product water" is relatively high in sodium. High sodicity reduces water quality and limits environmentally compliant disposal options for producers. Crop irrigation with CBNG product water complies with state and federal laws and is a disposal method that also provides a beneficial use to private landowners. However, this disposal method typically requires gypsum and sulfur soil amendments due to the high levels of sodium in the water, which can reduce soil infiltration and hydraulic conductivity. In this study, I tested a new product called Salt Extractor that was marketed to CBNG producers to ameliorate the negative effects of high sodicity. The experiment was conducted in the Powder River Basin of Wyoming. I used a random block design to compare the soil and vegetation properties of plots following application with CBNG product water and treatments of either Salt Extractor, gypsum and sulfur (conventional), or no treatment (control). Data was analyzed by comparing the amount of change between treatments after watering. Results demonstrated the known ability of gypsum and sulfur to lower the relative sodicity of the soil. Plots treated with Salt Extractor, however, did not improve relative levels of sodicity and exhibited no favorable benefits to vegetation.
ContributorsAdams, Shelly (Author) / Hall, Sharon (Thesis advisor) / Chew, Matt (Committee member) / Stromberg, Juliet (Committee member) / Arizona State University (Publisher)
Created2011
149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149092-Thumbnail Image.png
Description

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus

The ASU COVID-19 testing lab process was developed to operate as the primary testing site for all ASU staff, students, and specified external individuals. Tests are collected at various collection sites, including a walk-in site at the SDFC and various drive-up sites on campus; analysis is conducted on ASU campus and results are distributed virtually to all patients via the Health Services patient portal. The following is a literature review on past implementations of various process improvement techniques and how they can be applied to the ABCTL testing process to achieve laboratory goals. (abstract)

ContributorsKrell, Abby Elizabeth (Co-author) / Bruner, Ashley (Co-author) / Ramesh, Frankincense (Co-author) / Lewis, Gabriel (Co-author) / Barwey, Ishna (Co-author) / Myers, Jack (Co-author) / Hymer, William (Co-author) / Reagan, Sage (Co-author) / Compton, Carolyn (Thesis director) / McCarville, Daniel R. (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
156422-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) and belowground net primary production (BNPP) may not be influenced equally by the same factors in arid grasslands. Precipitation is known to affect ANPP and BNPP, while soil fauna such as nematodes affect the BNPP through herbivory and predation. This study on black grama grass

Aboveground net primary production (ANPP) and belowground net primary production (BNPP) may not be influenced equally by the same factors in arid grasslands. Precipitation is known to affect ANPP and BNPP, while soil fauna such as nematodes affect the BNPP through herbivory and predation. This study on black grama grass (Bouteloua eriopoda) in the Chihuahuan Desert investigates the effects of precipitation and nematode presence or absence on net primary production (NPP) as well as the partitioning between the aboveground and belowground components, in this case, the fraction of total net primary production occurring belowground (fBNPP). I used a factorial experiment to investigate the effects of both precipitation and nematode presence on the components of NPP. I used rainout shelters and an irrigation system to alter precipitation totals, while I used defaunated and re-inoculated soil for the nematode treatments. Precipitation treatment and seasonal soil moisture had no effect on the BNPP and a nonsignificant positive effect on the ANPP. The fBNPP decreased with increasing precipitation and seasonal soil moisture, though without a significant effect. No predator nematodes were found in any of the microcosms at the end of the experiment, though other functional groups of nematodes, including herbivores, were found in the microcosms. Total nematode numbers did not vary significantly between nematode treatments, indicating that the inoculation process did not last for the whole experiment or that nematodes had little plant material to eat and resulted in low population density. Nematode presence did not affect the BNPP, ANPP, or the fBNPP. There were no significant interactions between precipitation and nematode treatment. The results are inconclusive, possibly as a result of ecosystem trends during an unusually high precipitation year, as well as the very low NPP values in the experiment that correlated with low nematode community numbers.
ContributorsWiedenfeld, Amy (Author) / Sala, Osvaldo (Thesis advisor) / Gerber, Leah (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2018
156242-Thumbnail Image.png
Description
Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape-

Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape- and patch-based studies that have caused significant uncertainty concerning fragmentation’s effects on biological communities. Here I tested the hypothesis that habitat fragmentation alters biological communities by creating hierarchically nested selective pressures across plot-, patch-, and landscape-scales using woody plant community datasets from Thousand Island Lake, China. In this archipelago edge-effects had little impact on species-diversity. However, the amount of habitat in the surrounding landscape had a positive effect on species richness at the patch-scale and sets of small islands accumulated species faster than sets of large islands of equal total size at the landscape-scale. In contrast, at the functional-level edge-effects decreased the proportion of shade-tolerant trees, island-effects increased the proportion of shade- intolerant trees, and these two processes interacted to alter the functional composition of the regional pool when the total amount of habitat in the landscape was low. By observing interdependent fragmentation-mediated effects at each scale, I found support for the hypothesis that habitat fragmentation’s effects are hierarchically structured.
ContributorsWilson, Maxwell (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew (Committee member) / Hall, Sharon (Committee member) / Jiang, Lin (Committee member) / Cease, Arianne (Committee member) / Arizona State University (Publisher)
Created2018
157423-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth.

Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth. This study drew upon localized rain gauge data and four data-sets of cover-line and biomass data to estimate ANPP and to determine annual precipitation (PPT). I measured soil depth to caliche and texture by layer of 112 plots across the four landscape units for which estimation of ANPP were available. A pedotransfer function was used to estimate AWHC from soil depth increments to depth of caliche measurements and texture analysis. These data were analyzed using simple and multivariate regression to test the effect of annual precipitation and available water holding capacity on aboveground net primary production. Soil texture remained constant among all plots (sandy loam) and depth to caliche varied from 15.16 cm to 189 cm. AWHC and the interaction term (PPT*AWHC) were insignificant (p=0.142, p=0.838) and annual PPT accounted for 18.4% of the variation in ANPP. The y-intercept was significantly different for ANPP ~ annual PPT when considering AWHC values either above or below 3 cm. Shrub ANPP was insensitive to precipitation regardless of AWHC (R2=-0.012, R2=0.014). Results from this study indicate that a model incorporating annual PPT and AWHC may not serve as a good predictor for ANPP at a site level where there is little variation in soil texture.
ContributorsWagner, Svenja K (Author) / Sala, Osvaldo E. (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Peters, Debra (Committee member) / Arizona State University (Publisher)
Created2019
156978-Thumbnail Image.png
Description
Rangelands are an extensive land cover type that cover about 40% of earth’s ice-free surface, expanding into many biomes. Moreover, managing rangelands is crucial for long-term sustainability of the vital ecosystem services they provide including carbon (C) storage via soil organic carbon (SOC) and animal agriculture. Arid rangelands are particularly

Rangelands are an extensive land cover type that cover about 40% of earth’s ice-free surface, expanding into many biomes. Moreover, managing rangelands is crucial for long-term sustainability of the vital ecosystem services they provide including carbon (C) storage via soil organic carbon (SOC) and animal agriculture. Arid rangelands are particularly susceptible to dramatic shifts in vegetation cover, physical and chemical soil properties, and erosion due to grazing pressure. Many studies have documented these effects, but studies focusing on grazing impacts on soil properties, namely SOC, are less common. Furthermore, studies testing effects of different levels of grazing intensities on SOC pools and distribution yield mixed results with little alignment. The primary objective of this thesis was to have a better understanding of the role of grazing intensity on arid rangeland soil C storage. I conducted research in long established pastures in Jornada Experimental Range (JER). I established a 1500m transect in three pastures originating at water points and analyzed vegetation cover and SOC on points along these transects to see the effect of grazing on C storage on a grazing gradient. I used the line-point intercept method to measure and categorize vegetation into grass, bare, and shrub. Since soil adjacent to each of these three cover types will likely contain differing SOC content, I then used this vegetation cover data to calculate the contribution of each cover type to SOC. I found shrub cover and total vegetation cover to decrease, while grass and bare cover increased with decreasing proximity to the water source. I found areal (g/m2) and percent (go SOC to be highest in the first 200m of the transects when accounting for the contribution of the three vegetation cover types. I concluded that SOC is being redistributed toward the water source via foraging and defecation and foraging, due to a negative trend of both total vegetation cover and percent SOC (g/g). With the decreasing trends of vegetation cover and SOC further from pasture water sources, my thesis research contributes to the understanding of storage and distribution of SOC stocks in arid rangelands.
ContributorsBoydston, Aaron (Author) / Sala, Osvaldo (Thesis advisor) / Throop, Heather (Committee member) / Hall, Sharon (Committee member) / Arizona State University (Publisher)
Created2018
133340-Thumbnail Image.png
Description
For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today,

For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today, innovations and technological advancements are happening at a pace like never seen before, and technology like automation and artificial intelligence are poised to once again fundamentally alter the way people live and work in society. Whether society is prepared or not, robots are coming to replace human labor, and they are coming fast. In many areas artificial intelligence has disrupted entire industries of the economy. As people continue to make advancements in artificial intelligence, more industries will be disturbed, more jobs will be lost, and entirely new industries and professions will be created in their wake. The future of the economy and society will be determined by how humans adapt to the rapid innovations that are taking place every single day. In this paper I will examine the extent to which automation will take the place of human labor in the future, project the potential effect of automation to future unemployment, and what individuals and society will need to do to adapt to keep pace with rapidly advancing technology. I will also look at the history of automation in the economy. For centuries humans have been advancing technology to make their everyday work more productive and efficient, and for centuries this has forced humans to adapt to the modern technology through things like training and education. The thesis will additionally examine the ways in which the U.S. education system will have to adapt to meet the demands of the advancing economy, and how job retraining programs must be modernized to prepare workers for the changing economy.
ContributorsCunningham, Reed P. (Author) / DeSerpa, Allan (Thesis director) / Haglin, Brett (Committee member) / School of International Letters and Cultures (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05